Researchers conduct forensic analysis of SARS-CoV-2-related coronaviruses

In a recent study posted to the Research Square* preprint server, researchers conducted a forensic analysis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-related coronaviruses (SARS2r-CoVs).

Study: Forensic analysis of novel SARS2r-CoV identified in game animal datasets in China shows evolutionary relationship to Pangolin GX CoV clade and apparent genetic experimentation. Image Credit: Andrii Vodolazhskyi/Shutterstock
Study: Forensic analysis of novel SARS2r-CoV identified in game animal datasets in China shows evolutionary relationship to Pangolin GX CoV clade and apparent genetic experimentation. Image Credit: Andrii Vodolazhskyi/Shutterstock

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

Other than bats, pangolins are the sole animals who have been found to be infected with SARS2r-CoVs before the coronavirus disease 2019 (COVID-19) pandemic. Various theories strived to explain the source of SARS-CoV-2. Some theories implicated the Huanan seafood market as a potential viral source. In contrast, other theories suggest that a SARS-CoV-2 progenitor virus was developed in a Wuhan laboratory that conducted SARS2r-CoVs research and was accidentally released.

About the study

In the present study, researchers examined the novel SARS2r-CoVs, which were detected in metatranscriptomic datasets related to game animals.

The team analyzed the sequence read archive (SRA) data from BioProjects PRJNA795267 and PRJNA793740. Subsequently, the team identified the pangolin Guangxi (GX)_ZC45r-CoV sequences present in the SRA datasets corresponding to two Myocastor coypus named Coypu or Nutria, two Hystrix brachyura including Malayan porcupine and Rhizomys pruinosus belonging to the Hoary bamboo rat, Meles leucurus from the Asian badger, and Paguma larvata from masked palm civet.

The team aligned each SRA dataset to the GX_ZC45r-CoV gap_filled reference genome which consisted of a GX_ZC45r-CoV developed with empty regions replaced with bat-SL-CoVZC45. The datasets were also assessed with systematic mitochondrial mapping to map the reads corresponding to the mitochondrial genomes.

Furthermore, the team employed the reads mapped to the human genomic mitochondria to assess the human mitochondrial haplogroup present in the genomic datasets. These datasets were mapped to the human reference mitochondrial genome.   

Results

The study results showed that the nonstructural protein 4 (NSP4), NSP10, and ribonucleic acid (RNA)-dependent RNA polymerase (RdRp) coding regions accounted for the coverage of the 16 game animal datasets. Furthermore, the number of reads that were mapped to GX_ZC45r-CoV gap_filled for the seven additional game animal datasets was found to be very low for one to eight reads. The team also noted that several single nucleotide variants (SNVs) related to bat-SL-CoVZC45 were found consistently in all the samples which indicated that the same strain was present in all the samples.

The alignment of GX_ZC45r-CoV to Guangdong (GD) pangolin CoVs (PCoVs) GX-P4L revealed 47 SNVs in the NSP4 region while alignment to bat-SL-CoVZC45 showed 104 SNVs in the NSP10/RdRp region. Furthermore, the coverage corresponding to the NSP4 coding region was incomplete but complete coverage was observed at the 3’ end, including the full coverage of the C-terminus and 50% coverage for the transmembrane domain of the NSP4 region.

The team also observed that while the RdRp coding region showed complete coverage, the NSP10 coding region revealed that 47% of the NSP10 5’ end was not covered with GX_ZC45r-CoV matching reads. Moreover, the 590 nucleotide (nt) region present at the 5’ end corresponding to the RdRp coding region had higher read coverage as compared to the remaining RdRp region. Another anomalous distribution of reading coverage was observed at the 14758 nt relative to bat-SL-CoVZC45.      

Mitochondrial mapping analysis showed that the datasets were contaminated with several unexpected eukaryotic species. Mammal species that were frequently detected in the datasets included Homo sapiens having 16% to 98% mitochondrial genomic coverage and Mus musculus having 13% to 71% genomic coverage. Moreover, the genomic coverage of both Paguma larvata and Homo sapiens was higher than that of the Mele leucurus.

Detection of mitochondrial haplogroups showed that a dominant haplogroup named F1c1 (a1) was detected in 12 of the 14 tested datasets. One of the remaining two datasets did not reveal any mapped reads while in the other dataset all the human mitochondrial reads were associated with the H27/H27e haplogroup. The minor haplogroups detected in the datasets included H1aw and H1t2 from MC-HuN-T-1, C from MC-HeB-T-1, and H27/H27e from the MJ-ZJ-MO-4 dataset.

Phylogenetic analysis was performed on the NSP10 region because it played an essential role in the methylation of the messenger RNA (mRNA) cap. The analysis showed that GX_ZC45r-CoV had a basal sister association with the GX CoV clade. On the other hand, the GD PCoVs were found to be more closely associated with the SARS-CoV-2/ BANAL clade and formed a basal sister clade. Furthermore, Bat-SL-CoV-ZC45 was substantially more divergent from the PD, GX, and SARS2r-CoV clades. The team also noted that the RdRp of GX_ZC45r-CoV was 95.85% similar to bat-SL-CoVZC45.

Overall, the study findings showed that specific regions present in the partial SARS2r-CoV genome and the GX PCoV clade have the same ancestor.

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

Journal references:

Article Revisions

  • May 13 2023 - The preprint preliminary research paper that this article was based upon was accepted for publication in a peer-reviewed Scientific Journal. This article was edited accordingly to include a link to the final peer-reviewed paper, now shown in the sources section.
Bhavana Kunkalikar

Written by

Bhavana Kunkalikar

Bhavana Kunkalikar is a medical writer based in Goa, India. Her academic background is in Pharmaceutical sciences and she holds a Bachelor's degree in Pharmacy. Her educational background allowed her to foster an interest in anatomical and physiological sciences. Her college project work based on ‘The manifestations and causes of sickle cell anemia’ formed the stepping stone to a life-long fascination with human pathophysiology.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Kunkalikar, Bhavana. (2023, May 13). Researchers conduct forensic analysis of SARS-CoV-2-related coronaviruses. News-Medical. Retrieved on December 27, 2024 from https://www.news-medical.net/news/20220713/Researchers-conduct-forensic-analysis-of-SARS-CoV-2-related-coronaviruses.aspx.

  • MLA

    Kunkalikar, Bhavana. "Researchers conduct forensic analysis of SARS-CoV-2-related coronaviruses". News-Medical. 27 December 2024. <https://www.news-medical.net/news/20220713/Researchers-conduct-forensic-analysis-of-SARS-CoV-2-related-coronaviruses.aspx>.

  • Chicago

    Kunkalikar, Bhavana. "Researchers conduct forensic analysis of SARS-CoV-2-related coronaviruses". News-Medical. https://www.news-medical.net/news/20220713/Researchers-conduct-forensic-analysis-of-SARS-CoV-2-related-coronaviruses.aspx. (accessed December 27, 2024).

  • Harvard

    Kunkalikar, Bhavana. 2023. Researchers conduct forensic analysis of SARS-CoV-2-related coronaviruses. News-Medical, viewed 27 December 2024, https://www.news-medical.net/news/20220713/Researchers-conduct-forensic-analysis-of-SARS-CoV-2-related-coronaviruses.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Breastfeeding after COVID-19 vaccination is safe, with minimal changes to milk composition