A single genomic change may have given modern humans an advantage over Neanderthals

A single amino acid change in the transketolase-like 1 (TKTL1) protein may have given modern humans an advantage over more ancient contemporaries like Neanderthals by enabling increased neocortical neurogenesis, researchers report.

According to the authors, this genetic change could contribute to the implied cognitive differences between modern and extinct archaic humans. The outer region of the cerebral cortex – the neocortex – is an evolutionarily advanced brain structure responsible for cognitive abilities. This structure is distinctly large and complex in humans, which is widely thought to endow our species with unique and extraordinary cognitive abilities.

However, the evolution of the neocortex in hominins isn't well understood, and although fossil evidence indicates that the Neanderthal brains were similar in size to those of modern humans, how they might have differed in function or structure remains unknown. Previous studies have shown that differences in neural progenitor cell populations can result in the variable size and shape of neocortices across living species. Anneline Pinson and colleagues compared genomic sequences from modern humans with Neanderthals and other apes and discovered a unique amino acid substitution encoded in the TKTL1 gene of modern humans. When placed in organoids or over-expressed in mouse and ferret brains, Pinson et al. found that the human TKTL1 variant (hTKTL1) drove more generation of basal radial glia (bRG) neuroprogenitors than the archaic variant, which resulted in the proliferation of neocortical neurons.

Disrupting hTKTL1 expression or replacing hTKTL1 with the archaic variant in human fetal neocortical tissue and cerebral organoids resulted in reduced bRG and neuron generation. "Together, these observations open the path to discovering more-specific evolutionary changes that shaped the modern human brain and may also help us predict the next steps of its evolution," write Brigitte Malgrange and Laurent Nguyen in a related Perspective.

Source:
Journal reference:

Pinson, A., et al. (2022) Human TKTL1 implies greater neurogenesis in frontal neocortex of modern humans than Neandertals. Science. doi.org/10.1126/science.abl6422.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Plant polyphenols: The secret to living longer and healthy aging?