Interferon response induced by Omicron BA.1 and BA.5 prevents influenza A infection

In a recent study posted to the bioRxiv* preprint server, researchers in Germany and the United Kingdom investigated the interferon responses induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant and SARS-CoV-2 Omicron sub-variants BA.1 and BA.5, and their efficacy in protecting cells from influenza A virus super-infection.

Study: Omicron-induced interferon signalling prevents influenza A virus infection. Image Credit: Liya Graphics / ShutterstockStudy: Omicron-induced interferon signalling prevents influenza A virus infection. Image Credit: Liya Graphics / Shutterstock

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

Background

Interferon signaling has been shown to play an important role in determining the severity of coronavirus disease 2019 (COVID-19). Children experience lower COVID-19 severity, presumably due to a more pronounced innate immune response involving interferons. Furthermore, patients with defective interferon response are susceptible to severe COVID-19.

Recent studies have indicated that the Omicron sub-variant BA.1 elicits a stronger interferon response but displays lower interferon antagonism compared to the Delta variant. Interestingly, the emergence of the Omicron variant in England resulted in a decline in influenza-like illnesses, which had surged during the Delta wave. The interferon response induced by the Omicron sub-variants could protect the body from influenza-like diseases.

About the study

The present study used isolates of the SARS-CoV-2 Delta variant and Omicron BA.1 and BA.5 sub-variants to induce an interferon response in primary human bronchial epithelial (HBE) cells grown in air-liquid interface (ALI) cultures and primary human monocytes. The ALI HBE cells and the human monocytes were co-infected with influenza A Hemagglutinin Type 1 and Neuraminidase Type 1 (H1N1) and Hemagglutinin Type 5 and Neuraminidase Type 1 (H5N1) strains.

One-step reverse-transcription quantitative polymerase chain reaction (qRT-PCR) was used to detect intracellular and extracellular SARS-CoV-2 ribonucleic acid (RNA) in the infected ALI HBE culture and human monocytes to confirm viral replication. In addition, Immunoblot assays were used to detect viral nucleoproteins and various cell signaling proteins involved in the interferon response.

The melanoma differentiation-associated protein 5 (MDA5) is thought to mediate interferon production by activating interferon receptors that initiate the Janus kinase (JAK) signal transducer and activator of the transcription (STAT) pathway. MDA5 knockout cells and the JAK/STAT inhibitor baricitinib were used to test this hypothesis.

Results

The study results showed that biologically active type I (α/β) and type III (λ) interferons were induced only from Omicron sub-variant infections. The BA.1- and BA.5-induced interferon responses were seen to protect ALI HBE cells and human monocytes from influenza A H1N1 and H5N1 infections. Furthermore, human monocytes were protected from influenza A infections even after an abortive Omicron infection, indicating that complete viral replication is not required for an interferon-mediated antiviral state.

The decreased pathogenicity of the Omicron sub-variants could be explained by the kinetics of the BA.1-induced type I and III interferons. The α/β interferon peak caused by BA.1 infection was early and short-lived, which is thought to mediate an antiviral response but not result in a deleterious inflammatory response. However, the BA.1 type III (λ) interferon response was sustained, resulting in prolonged antiviral action and reduced inflammation in the respiratory tract.

The BA.1 sub-variant was also seen to replicate faster than the Delta variant in ALI HBE cells. The authors believe that the difference in the spike proteins and how the two strains utilize the angiotensin-converting enzyme 2 (ACE2) could explain the higher viral uptake of BA.1. The heightened interferon response of BA.1 could be attributed to the increased viral uptake.

Additionally, the lack of BA.1-induced interferon response in MDA5 knockout cells indicated that recognition of the double-stranded viral RNA by MDA5 mediates the interferon response in BA.1-infected cells. The inhibition of the JAK/STAT pathway by baricitinib increased the replication of BA.1 in ALI HBE cells but prevented the interferon-mediated suppression of influenza A H1N1 infection. These results indicate that the interferon response induced by the Omicron sub-variants is mediated by MDA5 action on interferon receptors, which activates the JAK/STAT signaling pathway.

The researchers report that the BA.5-induced interferon response is comparable to the BA.1-induced response in its antiviral action against influenza A viruses.

Conclusions

To summarize, the study reports that infection with the SARS-CoV-2 Omicron sub-variants BA.1 and BA.5 induces an interferon response that protects the cells against infection with influenza A H1N1 and H5N1 strains. The interferon response to infection by the Delta variant of SARS-CoV-2 did not exhibit similar antiviral action. Furthermore, the kinetics of BA.1-induced interferons differs from that of the Delta variant, which could explain the decreased pathogenicity of the Omicron sub-variants. Moreover, the BA.1 interferon response is mediated by the activation of the JAK/STAT signaling pathway by MDA5.

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

Journal references:

Article Revisions

  • May 15 2023 - The preprint preliminary research paper that this article was based upon was accepted for publication in a peer-reviewed Scientific Journal. This article was edited accordingly to include a link to the final peer-reviewed paper, now shown in the sources section.
Dr. Chinta Sidharthan

Written by

Dr. Chinta Sidharthan

Chinta Sidharthan is a writer based in Bangalore, India. Her academic background is in evolutionary biology and genetics, and she has extensive experience in scientific research, teaching, science writing, and herpetology. Chinta holds a Ph.D. in evolutionary biology from the Indian Institute of Science and is passionate about science education, writing, animals, wildlife, and conservation. For her doctoral research, she explored the origins and diversification of blindsnakes in India, as a part of which she did extensive fieldwork in the jungles of southern India. She has received the Canadian Governor General’s bronze medal and Bangalore University gold medal for academic excellence and published her research in high-impact journals.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Sidharthan, Chinta. (2023, May 15). Interferon response induced by Omicron BA.1 and BA.5 prevents influenza A infection. News-Medical. Retrieved on December 25, 2024 from https://www.news-medical.net/news/20220912/Interferon-response-induced-by-Omicron-BA1-and-BA5-prevents-influenza-A-infection.aspx.

  • MLA

    Sidharthan, Chinta. "Interferon response induced by Omicron BA.1 and BA.5 prevents influenza A infection". News-Medical. 25 December 2024. <https://www.news-medical.net/news/20220912/Interferon-response-induced-by-Omicron-BA1-and-BA5-prevents-influenza-A-infection.aspx>.

  • Chicago

    Sidharthan, Chinta. "Interferon response induced by Omicron BA.1 and BA.5 prevents influenza A infection". News-Medical. https://www.news-medical.net/news/20220912/Interferon-response-induced-by-Omicron-BA1-and-BA5-prevents-influenza-A-infection.aspx. (accessed December 25, 2024).

  • Harvard

    Sidharthan, Chinta. 2023. Interferon response induced by Omicron BA.1 and BA.5 prevents influenza A infection. News-Medical, viewed 25 December 2024, https://www.news-medical.net/news/20220912/Interferon-response-induced-by-Omicron-BA1-and-BA5-prevents-influenza-A-infection.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Single mutation in (HPAI) H5N1 influenza virus could increase human transmission risk