Scientists develop an unprecedented animal model to investigate Ewing sarcoma

Ewing sarcoma is the second most frequent bone tumour in children, adolescents, and young adults. There is no specific treatment for this disease and current management is still limited to surgery, radiotherapy, and chemotherapy. The long-term survival of patients with metastatic or relapsed Ewing sarcoma is very low.

Ewing sarcoma is caused by a single oncogene that results from the fusion of two genes. Although a variety of genes may be involved, EWSR1 and FLI1 and the resulting cancer-driving oncogene, known as EWS-FLI, are found to be responsible in the majority of patients. Unlike most other types of cancer, all attempts to develop experimental animal models of Ewing sarcoma in mice (expressing the EWS-FLI oncogene) have failed.

Prompted by the need for a genetically tractable model that could be used to study the disease, researchers led by Dr. Cayetano González, ICREA research professor at IRB Barcelona, and Dr. Jaume Mora, scientific director at the SJD Pediatric Cancer Center Barcelona (PCCB), have engineered Drosophila transgenic strains that express a mutant variant of the human oncogene called EWS-FLIFS. Remarkably, they have found that expression of the human EWS-FLIFS protein in certain types of Drosophila cells triggers the same oncogenic pathways known to account for EWS-FLI oncogenic activity in human patients.

Lighting up two oncogenic pathways

Building upon their new transgenic Drosophila line, the authors have rewired two oncogenic pathways used by EWS-FLI, such that when triggered by the presence of EWS-FLIFS, they result in the expression of a fluorescent protein that would otherwise never be expressed. Thus, rather than tumour growth, the researchers use fluorescence as a read-out of EWS-FLI oncogenic activity.

This simple genetic trick greatly facilitates the implementation of massive genetic and chemical screens to identify "modifiers" that inhibit EWS-FLI's oncogenic activity as inhibitors of the appearance of fluorescence.”

Dr. Cristina Molnar, postdoctoral researcher at IRB Barcelona and first author of the study

Genetic screens based on this new model will make it possible to discover critical proteins required for EWS-FLI to exert its oncogenic function, hence expanding our knowledge of the molecular basis of the disease, as well as identifying new putative therapeutic targets.  Chemical screens may identify compounds that could serve as lead molecules for the development of therapeutic drugs.

A solid collaboration between IRB Barcelona and PCCB

The laboratories led by Dr. González and Dr. Mora have been working together since 2019 to explore the use of Drosophila as a model for pediatric cancer.

Ongoing lines in this collaboration include genetic and chemical screens based on the Ewing sarcoma model and the development of new Drosophila models for other types of pediatric cancer.

Source:
Journal reference:

Molnar, C., et al. (2022) Human EWS-FLI protein recapitulates in Drosophila the neomorphic functions that induce Ewing sarcoma tumorigenesis. PNAS Nexus. doi.org/10.1093/pnasnexus/pgac222.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study connects brain volume variations with genetic risk factors for Parkinson’s disease and ADHD