Polymorphisms in human immunoglobulin heavy chain genes can influence the function of SARS-CoV-2 neutralizing antibodies

In a recent study published in Immunity, researchers isolated SARS-CoV-2 spike (S) protein-targeted mAbs (monoclonal antibodies) from convalescent healthcare workers (HCWs), emphasizing the IGHV1-69 (immunoglobulin heavy variable 1-69) gene, the gene with the greatest structural and allelic variation.

Study: Immunoglobulin germline gene polymorphisms influence the function of SARS-CoV-2 neutralizing antibodies. Image Credit: ktsdesign/Shutterstock
Study: Immunoglobulin germline gene polymorphisms influence the function of SARS-CoV-2 neutralizing antibodies. Image Credit: ktsdesign/Shutterstock

Background

The human immunoglobulin (Ig) heavy chain (HC) locus has remarkable polymorphisms with a high degree of structural and allelic variation. The personal germline IGH genotypes might alter responses to vaccination and infection. However, data on allele-specific responses are limited, and further research is required to deepen understanding of inter-individual differences in Ab responses.

About the study

In the present study, researchers performed immunoglobulin genotyping of prior severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected HCWs to detect structural and allelic variations, especially those that affect IGHV 1-69.

An individual with numerous anti-S memory B lymphocytes and elevated IGHV composition was chosen, from whom 29 anti-SARS-CoV-2 mAbs were isolated. The effects of IGHV use were evaluated by reverting a robust IGHV1-69*20 utilizing neutralizing Ab, CAB-I47, to sequences of the IGHV1-69*20 allele and five other alleles of IGHV1-69. High-resolution cryo-electron microscopy (cryo-EM) was performed to assess molecular Ab-SARS-CoV-2 S receptor-binding domain (RBD) interactions.

The study cohort comprised 14 HCWs (SP01 to SP14), who tested SARS-CoV-2-positive by reverse transcription-polymerase chain reaction (RT-PCR) analysis in May 2020 to assess memory B lymphocyte responses and anti-S Ab evolution. Sera and peripheral blood mononuclear cells (PBMCs) were obtained 7.0 months post-SARS-CoV-2 infection. The study participants elicited anti-S IgG titers and neutralized SARS-CoV-2. To assess participant IGHVV genotypes, IgM libraries were expressed, bulk sequenced, and analyzed.

Further, haplotype analysis was performed to identify alleles present on the chromosomes of the participants. SP14 (who had 3.0 IGHV1-69 gene alleles IGHV1-69*01, 02, *20) was selected for further analysis, for whom the lambda and kappa light chain V alleles, IGLV and IGKV, were determined. Anti-S IgG+ memory B lymphocytes were sorted for Ab sequence analysis.

Further, PMBC ribonucleic acid (RNA) sequencing was performed, and Ab V(D)J sites from the sorted cells were amplified by RT-PCR. IGHV1-69 allele sequence alignment was assessed, and CAB-147 mAb (which used IGHV1-69*20) was chosen to assess the role of IGHV1-69 allele variations.

Furthermore, the V gene site was reverted to the IGHV1-69*20 configuration to assess the contribution of somatic hypermutations (SHMs) towards CAB-I47 neutralization ability. Structural analysis was performed, and the binding affinities for CAB-I47, CAB-I47gL*20, CAB-I47gL*04, and CAB-I47 F55L Fabs (fragment-antigen binding) were assessed by surface plasmon resonance (SPR) analysis.

Germline-reverted (gL) HCs were co-expressed with mature LCs of CAB-N86 and CAB-M77, and their neutralization potencies were determined. Further, HDX-MS (hydrogen-deuterium exchange mass spectrometry) was performed to assess CAB-M77 and CAB-I47 target specificities.

Results

CAB-I47 Ab depended critically on allele use, and SARS-CoV-2 neutralization was maintained when reverting the variable (V) site to the IGHV1-69*20 allele but lost when reverting to other IGHV1-69 alleles. Structural analysis findings showed that the F55 and R50 germline-encoded genetic polymorphisms in IGHV1-69 were essential for high-binding affinity S RBD-Ab interactions. CAB-I12, CAB-M77, CAB-I47, CAB-J39, and CAB-N86 mAbs potently neutralized SARS-CoV-2 using the IGHV1-69*20 allele, found to be critical for Ab function.

Six alleles were detected in the participants, which were IGHV1-69*01, *02, *04, *06, *09, and *20. Participants SP-01, -02, -06, -08, and -11 showed IGHJ heterozygosity (IGHJ6*02, -03), SP14 showed IGHD2-21 heterozygosity (IGHD2-21*01,*02), and SP-04, 05 showed IGHD3-10 heterozygosity. Haplotype analysis findings confirmed high structural and allelic variations in IGHV1-69. In the study, heavy chain sequences (n=177) and paired heavy chain-light chain sequences (n=146) were identified.

A highly polyclonal anti-S response was observed, with 171 distinct clones from 177 analyzed HC sequences. Many mAbs utilized IGHV3-53 and comprised small HCDR3s (HC complementarity-determining region 3), indicative of class 1 type anti-SARS-CoV-2 Abs, and CAB-52, a highly potent SARS-CoV-2-neutralizing mAb, utilized IGHV3-30-3*01. Most of the potent SARS-CoV-2-neutralizing mAbs utilized the IGHV1-69*02, *20 alleles.

The average SHMs for neutralizing mAbs were 10% and 6.0%, and 10% in the amino acid sequence and the nucleotide (nt) sequence, respectively, and the J gene lacked SHMs. SP14 elicited IGHV1-69 using potent neutralizing mAbs. The ancestral SARS-CoV-2 strain neutralization potential of CAB-I47gL*20 (variable gene gL CAB-I47 mAb version) was 6.0-fold lower than other Abs.

The gL allele-swapped Abs lost SARS-CoV-2-neutralizing ability, except the CAB-I47gL*04 mAb. CAB-I47 F55L neutralization was lower by >10-fold in comparison to the CAB-I47 mAb. The binding affinity was considerably lesser for the CAB-I47 mAb fragment-antigen binding region than for CAB-I47gL*20. CAB-I47 F55L fragment-antigen binding region showed comparable on-rates as CAB-I47, but rapid off-rates and CAB-I47gL*04 fragment antigen-binding region showed very low S RBD-binding affinity.

From the CoV-Ab database, the team identified neutralizing IGHV1-69-using Abs, BD56- 031, BD57-005, REGN1097740, XGv-23239, C1210, C121142, and C14646P3S41, that used IGHV1-69*20. CAB-I47 Fab was bound to the upper RBD region and belonged to class 2 anti-RBD Abs. CAB-I47, CAB-M77 and CAB-N86 were sensitive to the Zeta (the ancestral D614G strain comprising E484K) mutation. CAB-I47 Fab blocked angiotensin-converting enzyme 2 (ACE2) binding due to steric conflicts. The light chain was also involved. CV1206, CV118237, and BG1-2438 mAbs used the IGHV1-69*20 allele and were sensitive to the Zeta mutation.

Conclusion

Overall, the study findings showed that single IGH gene polymorphisms could impact the SARS-CoV-2-neutralizing Ab function.

Journal reference:
Pooja Toshniwal Paharia

Written by

Pooja Toshniwal Paharia

Pooja Toshniwal Paharia is an oral and maxillofacial physician and radiologist based in Pune, India. Her academic background is in Oral Medicine and Radiology. She has extensive experience in research and evidence-based clinical-radiological diagnosis and management of oral lesions and conditions and associated maxillofacial disorders.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Toshniwal Paharia, Pooja Toshniwal Paharia. (2022, December 14). Polymorphisms in human immunoglobulin heavy chain genes can influence the function of SARS-CoV-2 neutralizing antibodies. News-Medical. Retrieved on November 24, 2024 from https://www.news-medical.net/news/20221214/Polymorphisms-in-human-immunoglobulin-heavy-chain-genes-can-influence-the-function-of-SARS-CoV-2-neutralizing-antibodies.aspx.

  • MLA

    Toshniwal Paharia, Pooja Toshniwal Paharia. "Polymorphisms in human immunoglobulin heavy chain genes can influence the function of SARS-CoV-2 neutralizing antibodies". News-Medical. 24 November 2024. <https://www.news-medical.net/news/20221214/Polymorphisms-in-human-immunoglobulin-heavy-chain-genes-can-influence-the-function-of-SARS-CoV-2-neutralizing-antibodies.aspx>.

  • Chicago

    Toshniwal Paharia, Pooja Toshniwal Paharia. "Polymorphisms in human immunoglobulin heavy chain genes can influence the function of SARS-CoV-2 neutralizing antibodies". News-Medical. https://www.news-medical.net/news/20221214/Polymorphisms-in-human-immunoglobulin-heavy-chain-genes-can-influence-the-function-of-SARS-CoV-2-neutralizing-antibodies.aspx. (accessed November 24, 2024).

  • Harvard

    Toshniwal Paharia, Pooja Toshniwal Paharia. 2022. Polymorphisms in human immunoglobulin heavy chain genes can influence the function of SARS-CoV-2 neutralizing antibodies. News-Medical, viewed 24 November 2024, https://www.news-medical.net/news/20221214/Polymorphisms-in-human-immunoglobulin-heavy-chain-genes-can-influence-the-function-of-SARS-CoV-2-neutralizing-antibodies.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study identifies six cancer susceptibility genes