Study links epigenetic biological aging and aberrations in neural oscillatory activity in people with HIV

A new research paper was published in Aging (listed as "Aging (Albany NY)" by MEDLINE/PubMed and "Aging-US" by Web of Science) Volume 14, Issue 24, entitled, "Epigenetic aging is associated with aberrant neural oscillatory dynamics serving visuospatial processing in people with HIV."

Despite effective antiretroviral therapy, cognitive impairment and other aging-related comorbidities are more prevalent in people with HIV (PWH) than in the general population. Previous research examining DNA methylation has shown PWH exhibit accelerated biological aging. However, it is unclear how accelerated biological aging may affect neural oscillatory activity in virally suppressed PWH, and more broadly how such aberrant neural activity may impact neuropsychological performance.

In this new study, participants (n = 134) between the ages of 23 – 72 years underwent a neuropsychological assessment, a blood draw to determine biological age via DNA methylation, and a visuospatial processing task during magnetoencephalography (MEG). Researchers Mikki Schantell, Brittany K. Taylor, Rachel K. Spooner, Pamela E. May, Jennifer O'Neill, Brenda M. Morsey, Tina Wang, Trey Ideker, Sara H. Bares, Howard S. Fox, and Tony W. Wilson from the Boys Town National Research Hospital, University of Nebraska Medical Center, Creighton University, Heinrich-Heine University, and the University of California San Diego focused their analyses on the relationship between biological age and oscillatory theta (4-8 Hz) and alpha (10 - 16 Hz) activity among PWH (n=65) and seronegative controls (n = 69).

"To our knowledge, no study to date has directly linked accelerated biological aging in PWH to the neuro-functional changes that occur in cognitively impaired PWH, which include deficits in visuospatial processing, attention, working memory, and motor function networks [10–19]."

PWH had significantly elevated biological age when controlling for chronological age relative to controls. Biological age was differentially associated with theta oscillations in the left posterior cingulate cortex (PCC) and with alpha oscillations in the right medial prefrontal cortex (mPFC) among PWH and seronegative controls. Stronger alpha oscillations in the mPFC were associated with lower CD4 nadir and lower current CD4 counts, suggesting such responses were compensatory. Participants who were on combination antiretroviral therapy for longer had weaker theta oscillations in the PCC.

These findings support the concept of interactions between biological aging and HIV status on the neural oscillatory dynamics serving visuospatial processing. Future work should elucidate the long-term trajectory and impact of accelerated aging on neural oscillatory dynamics in PWH.

"In sum, these findings provide compelling evidence linking epigenetic biological aging and aberrations in neural oscillatory activity in PWH, suggesting that biological aging may underlie some of the key neurological findings in the neuroHIV literature."

Source:
Journal reference:

Schantell, M., et al. (2022) Epigenetic aging is associated with aberrant neural oscillatory dynamics serving visuospatial processing in people with HIV. Aging-US. doi.org/10.18632/aging.204437.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
From womb to midlife: Prenatal immune disruptions reshape memory and cognitive aging