Study shows antibody-dependent SARS-CoV-2 transmission and pathogenesis

In a recent study posted to the bioRxiv* server, researchers reported that some monoclonal neutralizing antibodies (nAbs) directed against distinct receptor-binding domain (RBD) epitopes nested inside the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) could substitute angiotensin-converting enzyme 2 (ACE2) as a receptor and support fusion between viral and host cell membranes facilitating viral infectivity.

Study: Antibody-mediated cell entry of SARS-CoV-2. Image Credit: Kateryna Kon/Shutterstock
Study: Antibody-mediated cell entry of SARS-CoV-2. Image Credit: Kateryna Kon/Shutterstock

*Important notice: bioRxiv publishes preliminary scientific reports that are not peer-reviewed and, therefore, should not be regarded as conclusive, guide clinical practice/health-related behavior, or treated as established information.

Background

It provides a possible rationalization of how SARS-CoV-2 infects nonpermissive cells (e.g., blood monocytes) in humans with coronavirus disease 2019 (COVID-19). Yet, some aspects of COVID-19 pathogenesis and SARS-CoV-2 entry mechanisms remain unclear. For instance, how antibody-decorated viruses cross the endosomal membrane to enter the cytosol of the host cells and how ACE2 induces S subunit 1 (S1) dissociation. ACE2-liganded and unliganded S trimers are structurally identical in the RBD-up conformation.

Nonetheless, it is a concern that natural infection and vaccination-induced nAbs cause antibody-dependent enhancement (ADE) of SARS-CoV-2 infectivity and virulence. Studies have shown that in dengue, fragment crystallizable-gamma receptor (Fc-γR)-mediated infection of leukocytes facilitates ADE.

About the study

In the present study, researchers investigated whether anti-SARS-CoV-2 S monoclonal antibodies (mAbs) in a membrane-bound form could substitute ACE2 and directly function as an alternative receptor for SARS-CoV-2. They chose eight S RBD-specific mAbs, viz., C63C8, G32B6, C12A2, S2H97, C63C7, C12C9, and C81D6 and SP1-77, with the first seven isolated from COVID-19 convalescents and the last one retrieved from a humanized mice.

Further, they used a cell-cell fusion assay to evaluate whether these eight mAbs could support membrane fusion in the presence of the high-affinity Fc-γRI. Using the same assay, they also detected fusion activities in some polyclonal immunoglobulin G (IgG) antibodies purified from the serum of vaccinated convalescents or convalescents from an early COVID-19 pandemic phase. More specifically, they pursued evidence of whether antigen-binding (Fab) fragments of an S-specific IgG could replace the ACE2 receptor function.

Intriguingly, receptor-like mAbs could function as a complex of their soluble IgG form with Fc-γRI, together called a chimera. Whether an antigen binds a fragment of the transmembrane ACE2 domain or a membrane-bound B cell receptor, ACE2 and its interactions with the S trimers are dispensable for SARS-CoV-2 entry. However, it is yet unknown whether the antibody-Fc-γRI complex facilitates endocytosis of the attached virions or the antibody substitutes ACE2 as an entry receptor directly.

Study findings

The researchers made a remarkable finding based on merely eight monoclonal nAbs/IgGs they tested. They noted that four (of the six RBD-directed antibodies) worked efficiently as a host entry receptor, like ACE2, even against the authentic SARS-CoV-2. They did so when captured by Fc-γRI on the surfaces of target host cells, independent of ACE2.

The researchers also detected this S-catalyzed membrane-fusion activity in purified polyclonal IgGs or serum samples from some convalescents. However, future studies are warranted to determine the clinical significance of these receptor-like antibodies in studies with a greater sample size. Nonetheless, this new information fills a longstanding gap in understanding the COVID-19 pathogenesis.

Another significant observation was that the RBD and ACE2 were unnecessary for triggering the S protein to undergo conformational changes. Moreover, these receptor-like monoclonal IgGs targeted three distinct RBD epitopes; for instance, C63C8 targeted the exposed surface of the RBD-down conformation, while S2H97 targeted the obscure site visible in the RBD-up conformation. Two other nAbs, G32B6 and C12A2, targeted the ACE2-binding site. However, the researchers could not work out the mechanism employed by these nAbs to achieve the entry receptor’s function.

The finding that such receptor-like nAbs exist also explains how SARS-CoV-2 invades previously considered nonpermissive cells, such as lung macrophages and blood monocytes, which express no or low ACE2 levels in a membrane-bound form. In this way, they create conditions conducive for SARS-CoV-2 spread to other non-respiratory tissues. Thankfully, these cells do not support productive SARS-CoV-2 infection, yet SARS-CoV-2 reinfection increases all-cause mortality and poor health outcomes. Future studies should explore these aspects of COVID-19 pathogenesis further.

Overall, all receptor-like antibodies identified in this study were neutralizing in nature and potently inhibited SARS-CoV-2 infection in the water-soluble form.

Finally, the researchers noted that the receptor-like antibodies might contribute little towards the transmission of new SARS-CoV-2 variants, e.g., the Omicron subvariants. They evade all nAbs (receptor or non-receptor-like) as they have highly mutated S proteins. Also, there is a shortage of epidemiological evidence for ADE in the vaccinated population with or without prior COVID-19 history.

Conclusions

The study results suggested that receptor-like antibodies might expand the SARS-CoV-2 tropism even to nonpermissive cell types. Thus, they have important implications for COVID-19 pathogenesis.

*Important notice

bioRxiv publishes preliminary scientific reports that are not peer-reviewed and, therefore, should not be regarded as conclusive, guide clinical practice/health-related behavior, or treated as established information.

*Important notice: bioRxiv publishes preliminary scientific reports that are not peer-reviewed and, therefore, should not be regarded as conclusive, guide clinical practice/health-related behavior, or treated as established information.

Journal reference:
Neha Mathur

Written by

Neha Mathur

Neha is a digital marketing professional based in Gurugram, India. She has a Master’s degree from the University of Rajasthan with a specialization in Biotechnology in 2008. She has experience in pre-clinical research as part of her research project in The Department of Toxicology at the prestigious Central Drug Research Institute (CDRI), Lucknow, India. She also holds a certification in C++ programming.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Mathur, Neha. (2023, February 23). Study shows antibody-dependent SARS-CoV-2 transmission and pathogenesis. News-Medical. Retrieved on November 23, 2024 from https://www.news-medical.net/news/20230223/Study-shows-antibody-dependent-SARS-CoV-2-transmission-and-pathogenesis.aspx.

  • MLA

    Mathur, Neha. "Study shows antibody-dependent SARS-CoV-2 transmission and pathogenesis". News-Medical. 23 November 2024. <https://www.news-medical.net/news/20230223/Study-shows-antibody-dependent-SARS-CoV-2-transmission-and-pathogenesis.aspx>.

  • Chicago

    Mathur, Neha. "Study shows antibody-dependent SARS-CoV-2 transmission and pathogenesis". News-Medical. https://www.news-medical.net/news/20230223/Study-shows-antibody-dependent-SARS-CoV-2-transmission-and-pathogenesis.aspx. (accessed November 23, 2024).

  • Harvard

    Mathur, Neha. 2023. Study shows antibody-dependent SARS-CoV-2 transmission and pathogenesis. News-Medical, viewed 23 November 2024, https://www.news-medical.net/news/20230223/Study-shows-antibody-dependent-SARS-CoV-2-transmission-and-pathogenesis.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Public trust in COVID-19 vaccine science influences vaccine uptake in the US