Oral antiviral CD04872SC shows promise in neutralizing COVID-19 variants, offering hope for broad-spectrum treatment

In a recent article published in the journal Biomedicines, researchers at the University of Houston College of Pharmacy discuss their discovery of a small molecule drug candidate that could provide immediate protection against infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and markedly shorten the course of illness.

This exciting new small molecule drug candidate has the potential to be developed into an alternative drug treatment for [the coronavirus disease 2019] (COVID-19)."

Study: A Small Molecule That In Vitro Neutralizes Infection of SARS-CoV-2 and Its Most Infectious Variants, Delta, and Omicron. Image Credit: metamorworks / Shutterstock.com

Study: A Small Molecule That In Vitro Neutralizes Infection of SARS-CoV-2 and Its Most Infectious Variants, Delta, and Omicron. Image Credit: metamorworks / Shutterstock.com

Background

SARS-CoV-2 and its continuously emerging variants, the most recent of which include the Omicron sublineages, continue to cause infections worldwide and threaten patients of all ages. These variants have demonstrated the ease with which this lethal virus can accommodate antigenic changes in its spike (S) protein without losing its replication and immune-evading abilities. Therefore, identifying effective antivirals to combat COVID-19 is crucial.

About the study

In the present study, researchers perform in silico screening of 1,509,984 feature-rich compounds in the small molecule databases of UH Research Computing Data Core to identify top hits against the SARS-CoV-2 S glycoprotein. The top 15 molecules that disrupted the interaction between the S protein and host cell target, the angiotensin-converting enzyme 2 (ACE2) receptor, were selected, evaluated, and ranked in cell-based assays.

To this end, the researchers performed infection inhibition drug screening and cell cytotoxicity assays. Furthermore, the team used a Protein Thermal Shift assay based on differential scanning fluorimetry (DSF) utilizing a specialized fluorogenic dye to analyze stability changes of viral particles in the presence of the lead candidate CD04872SC.

Thermal shift assays quantify variations in temperatures at which a protein denatures, thereby indicating a protein’s stability under varying conditions, such as when it is attached to a drug or encounters varying pH. In the current study, a thermal shift assay was performed to demonstrate the binding between CD04872SC and the S glycoprotein of various SARS-CoV-2 variants.

Results

Molecular dynamic simulations revealed that some of the compounds from the Maybridge and ZINC libraries had favorable interactions with the ACE-2 receptor binding domain (RBD) interface. One small molecule, CD04872SC, formed the closest association in functional in vitro assays using its amide carbonyl and the backbone N of GLY169 at a resolution of 3.1 Å. This compound also established hydrophobic interactions with TYR116, TYR172, and TYR162.

CD04872SC exhibited a half-maximal effective concentration (EC50) of 248 μM and was found to inhibit infection with the SARS-CoV-2 Delta and Omicron variants with EC50 values of 152 μM and 308 μM, respectively. In cell cytotoxicity assays, CD04872SC showed no significant cell cytotoxicity within the tested concentrations.

Real-time melt experiments demonstrated the direct binding between CD04872SC and the S glycoprotein of each tested SARS-CoV-2 variant. The authors also noted a difference of about 3 °C in the stability of the SARS-CoV-2 viral suspensions in the presence of CD04872SC compared to its absence. Delta and Omicron exhibited similar stabilizing tendencies.

Conclusions

To summarize, the current study suggested that in striking contrast to vaccines, neutralizing small molecules could provide immediate protection against SARS-CoV-2 infection, irrespective of the age or immunity status of the individual. Such agents would have higher efficacy in high-risk populations, including immunocompromised individuals who do not adequately produce neutralizing antibodies (nAbs).

Further development of CD04872SC derivatives, including preclinical testing of their effectiveness in animal models, is still warranted to establish these agents as a potential treatment for COVID-19 and a more cost-effective substitute to expensive neutralizing mAb treatments.

This promising drug candidate lead should be developed into a family of derivatives that could be further refined, possibly leading to a more efficacious and cost-effective alternative to expensive neutralizing treatments.”

Journal reference:
  • Reyes-Alcaraz, A., Qasim, H., Merlinsky, E., et al. (2023). A Small Molecule That In Vitro Neutralizes Infection of SARS-CoV-2 and Its Most Infectious Variants, Delta, and Omicron. Biomedicines 11(916). doi:10.3390/biomedicines11030916
Neha Mathur

Written by

Neha Mathur

Neha is a digital marketing professional based in Gurugram, India. She has a Master’s degree from the University of Rajasthan with a specialization in Biotechnology in 2008. She has experience in pre-clinical research as part of her research project in The Department of Toxicology at the prestigious Central Drug Research Institute (CDRI), Lucknow, India. She also holds a certification in C++ programming.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Mathur, Neha. (2023, April 04). Oral antiviral CD04872SC shows promise in neutralizing COVID-19 variants, offering hope for broad-spectrum treatment. News-Medical. Retrieved on November 22, 2024 from https://www.news-medical.net/news/20230404/Oral-antiviral-CD04872SC-shows-promise-in-neutralizing-COVID-19-variants-offering-hope-for-broad-spectrum-treatment.aspx.

  • MLA

    Mathur, Neha. "Oral antiviral CD04872SC shows promise in neutralizing COVID-19 variants, offering hope for broad-spectrum treatment". News-Medical. 22 November 2024. <https://www.news-medical.net/news/20230404/Oral-antiviral-CD04872SC-shows-promise-in-neutralizing-COVID-19-variants-offering-hope-for-broad-spectrum-treatment.aspx>.

  • Chicago

    Mathur, Neha. "Oral antiviral CD04872SC shows promise in neutralizing COVID-19 variants, offering hope for broad-spectrum treatment". News-Medical. https://www.news-medical.net/news/20230404/Oral-antiviral-CD04872SC-shows-promise-in-neutralizing-COVID-19-variants-offering-hope-for-broad-spectrum-treatment.aspx. (accessed November 22, 2024).

  • Harvard

    Mathur, Neha. 2023. Oral antiviral CD04872SC shows promise in neutralizing COVID-19 variants, offering hope for broad-spectrum treatment. News-Medical, viewed 22 November 2024, https://www.news-medical.net/news/20230404/Oral-antiviral-CD04872SC-shows-promise-in-neutralizing-COVID-19-variants-offering-hope-for-broad-spectrum-treatment.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Futuristic AI-powered virtual lab designs potent SARS-CoV-2 nanobodies