A dimensional reduction strategy for enhanced cryopreservation of red blood cells

Small amounts of nanometer-thin metal-organic layers efficiently protect red blood cells during freezing and thawing, as a team of researchers writing in the journal Angewandte Chemie has discovered. The nanolayers, made from metal-organic frameworks based on the metal hafnium, prevent ice crystal formation at very low concentrations. This effective novel cryoprotection mode could be used to develop new and more efficient cryoprotectants for the biosciences.

A dimensional reduction strategy for enhanced cryopreservation of red blood cells

Image Credit: Angewandte Chemie

Cryoprotectants prevent ice crystals from forming when samples are frozen. Growing crystals can damage delicate cell membranes and cell components and disrupt cell integrity. Some solvents or polymers make good cryoprotectants; they keep ice crystal formation in check by binding water molecules and disrupting their ordered assembly during ice formation.

Synthetic chemistry has yet more tricks up its sleeve for targeting and influencing ice formation in a more effective way. Metal-organic frameworks (MOFs) are three-dimensional crystalline networks of metal ions linked by organic ligands. These ligands can be tailored to bind small molecules such as water, allowing the assembly of the water molecules into ice crystals to be very precisely tuned.

Wei Zhu from the South China University of Technology in Guangzhou (China) and colleagues have now discovered that as MOFs based on hafnium and organic ligands become thinner, their ability to bind and influence water molecules increases, mainly because more ligand sites are available. The team therefore developed a method for controlled deconstruction of the three-dimensional metal-organic frameworks until only two-dimensional thin nanolayers remain.

To test the suitability of their hafnium-MOLs (MOL stands for metal-organic layer, to distinguish them from three-dimensional MOFs) as cryoprotectants, the team froze red blood cells, a type of cell that needs to be stored in large numbers for medical purposes but is easily destroyed by ice crystal formation. Compared to the hydroxyethyl starch (HES), which is commonly used as a cryoprotectant, hafnium MOLs showed excellent cryoprotection at a minimal concentration of less than 0.1%, whereas the HES solutions are typically used at concentrations of up to 30%.

Zhu and the team explained that the MOLs are so effective because the irregular two-dimensional structure of the ligands binding the water molecules prevents the formation of regular ice crystal nuclei. The team suggest that the dimensional reduction of MOFs is an interesting new perspective for obtaining highly efficient cryoprotectants.

Source:
Journal reference:

Lei, Q., et al. (2023). Dimensional Reduction of Metal−Organic Frameworks for Enhanced Cryopreservation of Red Blood Cells. Angewandte Chemie. doi.org/10.1002/anie.202217374.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Just five minutes of activity a day could reduce blood pressure