Researchers discover possible new biomarker of MS-like autoimmune disease

It has been known for several years that the diagnosis "multiple sclerosis" conceals a whole range of different illnesses, each requiring customized treatment. Researchers at the University of Basel and the University Hospital of Basel have now described a possible new MS-like disease and explained how to diagnose it.

Multiple sclerosis (MS) is characterized by areas of inflammation in the central nervous system. The immune system attacks the body's own structures and destroys the covering of nerve cells, known as the myelin sheath. The picture research has painted of the illness is somewhat more complicated, however. It can cause a variety of neurological symptoms, like paresthesia and paralysis of the limbs, which progressively or abruptly worsen. Which parts of the nervous system are affected varies substantially between individuals. A treatment may work for some patients – but make the condition worse in others.

There's a huge amount of diversity in how inflammatory autoimmune diseases of the central nervous system like multiple sclerosis present."

Professor Anne-Katrin Pröbstel, University of Basel and University Hospital Basel

Researchers have been gradually discovering the key distinctive features of "atypical" cases of MS for the past ten years. A few of these autoimmune diseases have been given different names to better distinguish them from MS even though they also destroy the myelin sheath. Victims of these diseases often have inflammation in their spinal cords or optic nerves.

In a study of roughly 1,300 patients, Pröbstel's team has now discovered a biomarker that may make it possible to differentiate another MS-like illness from the others. The researchers have reported their findings in the journal JAMA Neurology.

Antibodies as biomarkers

The team discovered a specific antibody, a type of immunoglobulin A (IgA), in one group of patients. The antibody attacks a component of the myelin sheath called "MOG" (which stands for "myelin oligodendrocyte glycoprotein"). IgA antibodies are typically responsible for protecting mucous membranes.

The precise role of MOG-IgA in this autoimmune disease remains unclear, however. "Victims experience inflammation particularly in their spinal cords and brain stems," Pröbstel explains. This group of patients was missing other typical biomarkers related to MS or similar diseases.

Next, the researchers want to decipher the role of MOG-IgA and the clinical characteristics arising from it in more detail. "By distinguishing between myelin-destroying autoimmune diseases that were previously all called MS, we're taking an important step towards a better understanding of the causes of these illnesses and towards individualized treatments," says the neurologist. Ultimately, the researchers hope to discover what treatments are most effective under what conditions.

About the project

The study was conducted in collaboration with the Universidade de São Paulo in Brazil and several German universities (Charité Berlin, Heinrich Heine University Düsseldorf, Ruhr University Bochum). The research team from the Departments of Biomedicine and Clinical Research of the University of Basel, the Department of Neurology at the University Hospital, and the Research Center for Clinical Neuroimmunology, which is affiliated with both institutions, received funding for the study from the University Hospital of Basel's Propatient Foundation, the Goldschmidt-Jacobson Foundation, the Fondation Pierre Mercier pour la Science, the National Multiple Sclerosis Society and the Swiss National Science Foundation. The two lead authors received grants from the European Committee for Treatment and Research in Multiple Sclerosis Clinical Fellowship, as well as the Swiss Government Excellence Scholarship (Ana Beatriz A.G.R. Gomes) and the Trygve Tellefsens Legat Scholarship (Laila Kulsvehagen).

Source:
Journal reference:

Ayroza Galvão Ribeiro Gomes, A. B., et al. (2023). Immunoglobulin A Antibodies Against Myelin Oligodendrocyte Glycoprotein in a Subgroup of Patients With Central Nervous System Demyelination. JAMA Neurology. doi.org/10.1001/jamaneurol.2023.2523.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
MethylGPT unlocks DNA secrets for age and disease prediction