AI slashes stroke treatment time and saves lives in new study

In a recent study published in JAMA Neurology, researchers evaluate the implementation of automated software to detect large vessel occlusion (LVO) from computed tomography (CT) angiograms to improve endovascular stroke therapy workflows.

Study: Automated Large Vessel Occlusion Detection Software and Thrombectomy Treatment Times: A Cluster Randomized Clinical Trial. Image Credit: SquareMotion / Shutterstock.com Study: Automated Large Vessel Occlusion Detection Software and Thrombectomy Treatment Times: A Cluster Randomized Clinical Trial. Image Credit: SquareMotion / Shutterstock.com

Background

The timely implementation of endovascular thrombectomy is critical for improving patient outcomes after an acute ischemic stroke (AIS) with LVO. The time between the patient’s arrival at the hospital and initiation of endovascular thrombectomy has become an important metric for a hospital to receive a stroke center certification, with many concerted efforts made to reduce this time.

Some challenges to reducing this workflow time have been the detection of a possible AIS with LVO by the clinicians or radiologists, as well as communicating the need for an endovascular thrombectomy to the care team for its execution.

The use of artificial intelligence (AI) in the diagnosis of various medical conditions using CT images is being extensively explored. Thus, using automated AI-based methods for LVO screening of CT angiograms of patients presenting with possible AIS could reduce the time between assessment and endovascular thrombectomy.

About the study

In the present study, researchers utilize a randomized stepped-wedge clinical trial to determine the efficiency of an AI-based automated system in detecting LVO in possible AIS patients and improving the assessment and workflow time between hospital arrival and the initiation of endovascular thrombectomy. The randomized stepped-wedge method was implemented to circumvent issues associated with randomizing the analysis at the individual patient level while retaining the robustness of randomized evaluation.

The trial was conducted across four comprehensive stroke centers in the greater Houston region between January 2021 and the end of February 2022. After being provided clearance from the United States Food and Drug Administration (FDA) for the use of this AI platform for clinical care, in addition to significant financial support received for the implementation of the software, a stepped rollout in hospital-level clusters was performed.

Trial participants included patients who presented at the emergency departments of these four comprehensive stroke centers with symptoms of AIS with LVO and underwent CT angiography imaging. All patients who underwent endovascular thrombectomy for AIS with LVO of the middle cerebral, internal carotid, anterior cerebral, posterior cerebral, basilar, or intracranial vertebral arteries were included in the study.

Patients who presented as in-hospital stroke codes or had been transferred from other centers that did not perform endovascular thrombectomy were excluded from the analysis, as the workflow time for these patients was significantly different. For patients transferred from other centers, the decision for an endovascular thrombectomy has already been made, and they are taken directly for the procedure without further imaging, which would change the workflow time.

The intervention included activation of the automated AI-based LVO detection from the CT angiogram, which was coupled with a secure messaging system. This system was activated in the four comprehensive stroke centers in a random-stepped manner. The activated system alerted radiologists and clinicians on their mobile phones of a possible LVO minutes after the completion of CT imaging.

Primary study outcomes included the impact of the AI-based automated LVO detection system on the door-to-groin time, which was determined using a linear regression model. The secondary outcome was the time elapsed between arrival at the hospital and administration of the intravenous tissue plasminogen activator, the time between initiating the CT scan and beginning of the endovascular thrombectomy, and the duration of hospitalization.

Study findings

Implementing the AI-based automated LVO detection system, coupled with a secure application for communication using mobile phones, significantly improved the workflow time for in-hospital AIS. The implementation of this software across the four comprehensive stroke centers was associated with clinically relevant reductions in the treatment time for performing endovascular thrombectomy.

During the trial, about 250 patients presented at the emergency department of the four centers with LVO AIS. Implementing the AI-based automated system reduced the door-to-groin time by 11 minutes. Furthermore, mortality rates decreased by 60%, with the time between the initial CT scan and the start of the endovascular thrombectomy also associated with similar reductions.

Conclusions

The implementation of the automated AI-based system for detecting LVO among possible AIS patients, coupled with a secure application for communication, significantly reduced the in-hospital workflow and led to clinically significant reductions in endovascular thrombectomy treatment times.

Journal reference:
  • Martinez-Gutierrez, J. C., Kim, Y., Salazar-Marioni, S., et al. (2023). Automated Large Vessel Occlusion Detection Software and Thrombectomy Treatment Times: A Cluster Randomized Clinical Trial. JAMA Neurology. doi:10.1001/jamaneurol.2023.3206
Dr. Chinta Sidharthan

Written by

Dr. Chinta Sidharthan

Chinta Sidharthan is a writer based in Bangalore, India. Her academic background is in evolutionary biology and genetics, and she has extensive experience in scientific research, teaching, science writing, and herpetology. Chinta holds a Ph.D. in evolutionary biology from the Indian Institute of Science and is passionate about science education, writing, animals, wildlife, and conservation. For her doctoral research, she explored the origins and diversification of blindsnakes in India, as a part of which she did extensive fieldwork in the jungles of southern India. She has received the Canadian Governor General’s bronze medal and Bangalore University gold medal for academic excellence and published her research in high-impact journals.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Sidharthan, Chinta. (2023, September 21). AI slashes stroke treatment time and saves lives in new study. News-Medical. Retrieved on November 22, 2024 from https://www.news-medical.net/news/20230921/AI-slashes-stroke-treatment-time-and-saves-lives-in-new-study.aspx.

  • MLA

    Sidharthan, Chinta. "AI slashes stroke treatment time and saves lives in new study". News-Medical. 22 November 2024. <https://www.news-medical.net/news/20230921/AI-slashes-stroke-treatment-time-and-saves-lives-in-new-study.aspx>.

  • Chicago

    Sidharthan, Chinta. "AI slashes stroke treatment time and saves lives in new study". News-Medical. https://www.news-medical.net/news/20230921/AI-slashes-stroke-treatment-time-and-saves-lives-in-new-study.aspx. (accessed November 22, 2024).

  • Harvard

    Sidharthan, Chinta. 2023. AI slashes stroke treatment time and saves lives in new study. News-Medical, viewed 22 November 2024, https://www.news-medical.net/news/20230921/AI-slashes-stroke-treatment-time-and-saves-lives-in-new-study.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Machine learning helps predict stroke risk after CF-LVAD implantation