Pangolins' genetic makeup linked to increased coronavirus susceptibility

A study published in the journal Scientific Reports explains that pangolin's vulnerability to coronavirus infection might be due to their innate gene pseudogenization.

An RNA-Seq analysis of coronavirus in the skin of the PangolinStudy: An RNA-Seq analysis of coronavirus in the skin of the Pangolin. Image Credit: Makabas / Shutterstock

Background

Pangolins are 30 – 100 cm long anteaters found in Africa and Asia. Populations of all eight species of pangolin are decreasing in these two continents. Four pangolin species from Africa are now "endangered" or "vulnerable"; three species from East Asia are "critically endangered"; and one species from India is "endangered."

The greatest obstacle to pangolin conservation is the high susceptibility and frequent mortality of captive pangolins due to infections. The pseudogenization of immune system genes in the pangolin genome is believed to be the main contributing factor to high infection susceptibility. These pseudogenes are interferon Epsilon (IFNE), interferon-induced with helicase C domain 1, cyclic GMP-AMP synthase, stimulator of interferon genes, Toll-like receptor 5, and Toll-like receptor 11.  

The scientists of the current study have previously analyzed brain and lung samples from a Malayan pangolin and detected a coronavirus infection that was closely related to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative pathogen of the most recent coronavirus disease 2019 (COVID-19) pandemic.

In the current study, scientists conducted RNA-Seq analysis of the pangolin skin tissue to understand the transcriptional antiviral response in pangolin skin, particularly in the context of interferon Epsilon (IFNE)-deficiency, which is a unique immune feature of pangolin.

They compared the expressions of differentially expressed genes (DEGs) between coronavirus-infected pangolin skin and healthy pangolin skin. They also compared these DEGs with those found in coronavirus-infected human lungs because a corresponding dataset for coronavirus-infected human skin was unavailable. As humans and pangolins are mammals, the scientists expected some similarities in immune responses between human lungs and pangolin skin. 

Endogenous retrovirus genes are the remnants of once infectious exogenous retroviruses that became fixed in human or other animals' genomes. They can modulate the innate immune system and facilitate antiviral immune responses through various mechanisms. In this study, the scientists also evaluated how endogenous retrovirus gene expression in pangolin responds to coronavirus infection, particularly in the context of IFNE deficiency.

Important observations

The scientists identified pangolin coronavirus RNA in the skin of Malayan pangolin. This virus is closely related to another pangolin coronavirus MP789, isolated from the Guangdong pangolin. Since both pangolins were kept at the Guangdong Wildlife Rescue Center, the scientists believe both coronaviruses originated from the same source. 

The comparative analysis of DEGs between pangolin skin and human lung identified 2,835 pangolin skin-specific DEGs, 1,527 human lung-specific DEGs, and 366 shared DEGs. Three enriched pathways were identified in the pangolin skin-specific DEGS. These pathways were malaria and Staphylococcus aureus infection pathways (upregulated) and arachidonic acid metabolism pathways (downregulated). The malaria pathway was also upregulated in the human lungs.

Previous studies have shown that malaria pathways are upregulated after SARS-CoV-2 infection and that anti-malarial drugs can suppress SARS-CoV-2 replication. Similarly, arachidonic acid pathways are known to have inhibitory effects on coronavirus replication. Thus, the findings of comparative analysis indicate that both the malaria pathway and arachidonic acid pathway can serve as potential targets to control coronavirus infection in pangolins.

Further pathway enrichment analysis revealed that the most significantly upregulated pathways in the pangolin skin were the COVID-19 pathway, immunity and inflammation (except IFN) pathways, cell proliferation pathways, and coagulation pathways. These findings are consistent with that observed in SARS-CoV-2-infected humans. In contrast, no enrichment in IFN-specific pathways was observed in the infected skin. It could be related to natural IFNE deficiency in pangolins.

High levels of expression of many endogenous retrovirus genes were observed in healthy pangolin skin samples. This could be beneficial for pangolins in terms of boosting innate immune responses in the absence of IFNE responses. However, in coronavirus-infected skin samples, a downregulation of these genes was observed. This suggests that pangolin coronavirus may suppress endogenous retrovirus gene expression to support viral replication.      

Study significance

The study detects replicating coronavirus in the skin of Malayan pangolin and provides transcriptomic landscapes of the host immune response to coronavirus infection. The study also finds that the pathways downstream of the lost immune system genes are not upregulated in response to the infection. This highlights that the pseudogenization of key immune system-related genes can significantly modulate pangolin's antiviral responses and make them susceptible to coronavirus infection.

Journal reference:
Dr. Sanchari Sinha Dutta

Written by

Dr. Sanchari Sinha Dutta

Dr. Sanchari Sinha Dutta is a science communicator who believes in spreading the power of science in every corner of the world. She has a Bachelor of Science (B.Sc.) degree and a Master's of Science (M.Sc.) in biology and human physiology. Following her Master's degree, Sanchari went on to study a Ph.D. in human physiology. She has authored more than 10 original research articles, all of which have been published in world renowned international journals.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Dutta, Sanchari Sinha Dutta. (2024, January 10). Pangolins' genetic makeup linked to increased coronavirus susceptibility. News-Medical. Retrieved on October 31, 2024 from https://www.news-medical.net/news/20240110/Pangolins-genetic-makeup-linked-to-increased-coronavirus-susceptibility.aspx.

  • MLA

    Dutta, Sanchari Sinha Dutta. "Pangolins' genetic makeup linked to increased coronavirus susceptibility". News-Medical. 31 October 2024. <https://www.news-medical.net/news/20240110/Pangolins-genetic-makeup-linked-to-increased-coronavirus-susceptibility.aspx>.

  • Chicago

    Dutta, Sanchari Sinha Dutta. "Pangolins' genetic makeup linked to increased coronavirus susceptibility". News-Medical. https://www.news-medical.net/news/20240110/Pangolins-genetic-makeup-linked-to-increased-coronavirus-susceptibility.aspx. (accessed October 31, 2024).

  • Harvard

    Dutta, Sanchari Sinha Dutta. 2024. Pangolins' genetic makeup linked to increased coronavirus susceptibility. News-Medical, viewed 31 October 2024, https://www.news-medical.net/news/20240110/Pangolins-genetic-makeup-linked-to-increased-coronavirus-susceptibility.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Genetic analysis shows smoking and high BMI increase dementia risk, but education and exercise protect