New methods for heart monitoring could transform cardiovascular care

Chocolate valentines and candies with sweet sayings shouldn't be the only hearts you think about this February. It's also American Heart Month, which puts a spotlight on cardiovascular health. According to the American Heart Association, heart disease is the leading cause of death for Americans, so it's important to know the status of your own heart health. New methods for cardiac monitoring can be found in these five papers recently published in ACS journals. Reporters can request free access to these papers by emailing [email protected].

  1. Future electrocardiography (better known as ECG or EKG) monitoring could be done with self-powered electrodes. A study in ACS Applied Nano Materials details how a flexible heart rhythm sensor generates power from a person's movements. Real-time heart rate and ECG signals were collected by flexible electrodes placed on a person's chest, fingertip and wrist and transmitted wirelessly.
  2. Proof-of-concept test strips could identify the severity of congestive heart failure in about 30 minutes. Reporting in ACS Sensors, researchers developed paper-based strips that measure blood serum for three known markers of heart failure. When combined with a smartphone-connected reader, the method accurately indicated the cardiac disease severity of 13 out of 14 people.
  3. A soft implant to assess post-surgery heart function could dissolve in the body and avoid a follow up surgery to remove it. The flexible, biocompatible device has components that sense changes in levels of lactic acid and volatile organic compounds, as well as pH and pressure. Demonstrations on a beating, 3D-printed silicone heart model and 3D-printed cardiac tissue patches showed the device's potential for cardiac monitoring, as published in ACS Sensors.
  4. Next-generation implantable "smart" stents could wirelessly monitor blood flow and blood pressure. Authors report in ACS Sensors that the technology, which opens previously obstructed arteries, self-reports an unprecedented level of information on arterial function. In a 3D-printed system mimicking the beating of a human heart, the stent relayed systolic and diastolic pressures and detected blockages occupying up to 50% of a blood vessel.
  5. Blood biomarkers could indicate brain inflammation and neuronal injury after cardiac arrest. Multiple circulating immune cells were identified as indicators from preclinical animal studies of cardiac arrest and resuscitation. Researchers say the biomarkers could be incorporated into blood tests to predict and improve neurological outcomes in cardiac arrest patients, as reported in ACS Chemical Neuroscience.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study reveals variability in polygenic risk scores for predicting heart disease