Study observes rapid immune response in individuals switching to vegan and keto diets

In a recent study published in Nature Medicine, a group of researchers evaluated the impact of vegan and ketogenic diets on immune response and gut microbiota in humans.

Study: Differential peripheral immune signatures elicited by vegan versus ketogenic diets in humans. Image Credit: Boontoom Sae-Kor/Shutterstock.com
Study: Differential peripheral immune signatures elicited by vegan versus ketogenic diets in humans. Image Credit: Boontoom Sae-Kor/Shutterstock.com

Background 

Nutrition significantly influences physiological processes, including immune regulation, offering potential for dietary therapies in diseases like cancer and chronic inflammation.

Research indicates that low-fat vegan or vegetarian diets can lower inflammation and heart disease risk, while ketogenic diets may benefit certain epilepsy types and reduce neuroinflammation. However, the precise effect of diet on human immunity is still unclear. Dietary choices affect not just nutrient intake but also the gut microbiome, which is crucial for health.

Although animal studies show a clear diet-microbiome-immunity relationship, its impact on human immunity is less understood. Further research is needed to fully understand the complex interplay between different diets and human immune responses, enabling the development of tailored nutritional interventions for improved health outcomes.

About the study

The present study was conducted between April 2019 and March 2020 at the National Institutes of Health (NIH) Clinical Center. It involved participants aged 18-50 who were free from metabolic and cardiovascular diseases. Participants, informed about study risks, gave consent and were randomly assigned to first follow either a vegan or ketogenic diet for two weeks, then switched to the alternate diet.

Meals were prepared following dietary guidelines and monitored for intake. Participants' blood samples were collected for various analyses, including flow cytometry, transcriptomics, proteomics, and metabolomics. The study also investigated the gut microbiome using collected stool samples. However, not all participants agreed to broad data sharing, limiting the availability of some data sets.

The study was statistically powered to assess its primary and secondary outcomes, although the specific sample size was determined exploratorily. Dietary interventions included designed meals to ensure adherence to the respective diets. The impact of these diets on various health markers was analyzed, but the researchers were not blinded to the diet allocation.

Blood samples were processed for multiple analyses. Peripheral blood mononuclear cells (PBMCs) were isolated for flow cytometry and ribonucleic acid (RNA) analysis. The analysis of blood and plasma samples provided insights into the dietary effects on the immune system and metabolic pathways.

Study results

In the study, 20 participants underwent a cross-over dietary intervention, consuming both a high-fat, low-carbohydrate ketogenic diet and a low-fat, high-carbohydrate vegan diet for two weeks each, in random order. Both diets shared a base of nonstarchy vegetables but differed significantly in other components: the ketogenic diet included animal-based products, while the vegan diet incorporated plant-based foods. Differences in nutrient intake, particularly in fatty acids and amino acids, were significant between the diets.

The study evaluated the effects of these diets on the participants' immune cells, gene expression, protein composition, gut microbiota, and metabolic profiles. Various analyses were performed, including flow cytometry, proteomics, microbiome sequencing, RNA sequencing, and metabolomics, though not all participants contributed to every data set due to sample availability.

Flow cytometry revealed that both diets induced significant changes in immune cell composition, irrespective of the diet order. The ketogenic diet notably increased the frequency of certain immune cells like activated regulatory T cells and natural killer (NK) cells, while the vegan diet showed an increase in activated T helper and NK cells.

RNA sequencing of whole blood highlighted distinct gene expression patterns linked to each diet. The ketogenic diet was associated with upregulated pathways related to adaptive immunity, such as T-cell activation, while the vegan diet showed different impacts. Additionally, proteomics analysis suggested that the ketogenic diet might have broader effects on protein secretion and clearance, with noted sex-specific differences in response to the diets.

Microbiome analysis did not show a clear separation between diets but revealed significant shifts in composition, especially following the ketogenic diet. This diet led to a notable decrease in microbial pathways related to amino acid and vitamin biosynthesis, possibly due to the high amino acid content in the diet reducing reliance on microbiome-derived amino acids.

Metabolomics analysis further demonstrated that diets significantly impacted host metabolism, particularly in lipid profiles. Correlation analyses across datasets showed highly interconnected networks, mainly driven by factors related to amino acids, lipids, and the immune system. This complex interplay highlighted the profound influence of diet on host physiology, encompassing immune responses, gut microbiota, and metabolic processes. 

Journal reference:
Vijay Kumar Malesu

Written by

Vijay Kumar Malesu

Vijay holds a Ph.D. in Biotechnology and possesses a deep passion for microbiology. His academic journey has allowed him to delve deeper into understanding the intricate world of microorganisms. Through his research and studies, he has gained expertise in various aspects of microbiology, which includes microbial genetics, microbial physiology, and microbial ecology. Vijay has six years of scientific research experience at renowned research institutes such as the Indian Council for Agricultural Research and KIIT University. He has worked on diverse projects in microbiology, biopolymers, and drug delivery. His contributions to these areas have provided him with a comprehensive understanding of the subject matter and the ability to tackle complex research challenges.    

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Kumar Malesu, Vijay. (2024, February 01). Study observes rapid immune response in individuals switching to vegan and keto diets. News-Medical. Retrieved on October 31, 2024 from https://www.news-medical.net/news/20240201/Study-observes-rapid-immune-response-in-individuals-switching-to-vegan-and-keto-diets.aspx.

  • MLA

    Kumar Malesu, Vijay. "Study observes rapid immune response in individuals switching to vegan and keto diets". News-Medical. 31 October 2024. <https://www.news-medical.net/news/20240201/Study-observes-rapid-immune-response-in-individuals-switching-to-vegan-and-keto-diets.aspx>.

  • Chicago

    Kumar Malesu, Vijay. "Study observes rapid immune response in individuals switching to vegan and keto diets". News-Medical. https://www.news-medical.net/news/20240201/Study-observes-rapid-immune-response-in-individuals-switching-to-vegan-and-keto-diets.aspx. (accessed October 31, 2024).

  • Harvard

    Kumar Malesu, Vijay. 2024. Study observes rapid immune response in individuals switching to vegan and keto diets. News-Medical, viewed 31 October 2024, https://www.news-medical.net/news/20240201/Study-observes-rapid-immune-response-in-individuals-switching-to-vegan-and-keto-diets.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Fibrin fuels thromboinflammation and brain damage in COVID-19