NUS study reveals key mechanisms behind drug resistance in relapsed acute myeloid leukemia

Scientists from the National University of Singapore (NUS) have discovered that the evasion of apoptosis is a key driver of drug resistance in patients with relapsed acute myeloid leukaemia (AML), a type of aggressive blood cancer. The results are expected to contribute towards the identification of effective drugs for treating relapsed patients.

Over decades of clinical oncology practice has shown that treating cancer patients upon relapse is increasingly challenging. Relapsed patients not only become resistant to the treatment they receive but also to multiple other agents through a phenomenon called acquired multi-drug resistance — a major cause of treatment failures. Beyond genetic mutations, reliable evidence and available models, particularly in vivo, seem insufficient to explain the emergence of multi-drug resistance.

The research team led by Assistant Professor Shruti Bhatt from the NUS Department of Pharmacy and Pharmaceutical Sciences has identified the potential mechanism behind multi-drug resistance in relapsed AML patients. They also highlighted the effectiveness of a technique, called dynamic BH3 profiling (DBP), in identifying anti-cancer drugs capable of targeting relapsed leukaemia cells. The technique is able to measure the increase in mitochondrial priming, which signifies a higher potential for programmed cell death called apoptosis. This is a collaboration with Dr Anthony LETAI from the Dana-Farber Cancer Institute, United States of America.

The research findings were published in the journal Blood Cancer Discovery, a journal of the American Association for Cancer Research, on 4 March 2024.

The research team established in vivo models of acquired resistance to a spectrum of clinically relevant anti-cancer drugs using patient-derived xenograft (PDX) models. Subsequently, they conducted a comprehensive analysis encompassing genomics, transcriptomics, and functional studies on drug-resistant AML models. Intriguingly, their investigations revealed a common point for resistance induced by various drugs: the mitochondria. They observed a reduction in mitochondrial apoptotic priming, a phenomenon linked to a decreased tendency for cell death across all their models. This finding suggests that a decline in mitochondrial apoptotic priming is a fundamental mechanism underlying the multi-drug resistance observed in clinical settings, independent of the type of therapy and genetic background of the initial tumor.

A key finding was that a reduction in mitochondrial apoptotic priming accompanies acquired resistance to a wide variety of agents, suggesting it as a mechanism for the acquired multi-resistance seen in the clinic."

Shruti Bhatt, Assistant Professor, NUS Department of Pharmacy and Pharmaceutical Sciences

"One way to battle multi-drug resistance is to develop broadly effective predictive biomarkers to identify drugs with new or persistent activity in resistant tumours," added Asst Prof Bhatt.

To address this challenge, the researchers used dynamic BH3 profiling (DBP), a technique involving short-term treatment of leukaemia cells derived from therapy-resistant preclinical models with a panel of clinically relevant drugs. Mitochondrial apoptotic signalling is then measured to determine drugs capable of overcoming resistance. The researchers implemented DBP across 22 distinct PDX models of AML, and this approach demonstrated remarkable accuracy in predicting the in vivo efficacy of drugs with diverse mechanisms of action. DBP's ability to effectively identify exploitable vulnerabilities paves the way for the development of targeted in vivo therapeutic strategies.

Asst Prof Bhatt said, "As a next step, we are performing single-cell lineage tracing experiments using barcoding and proliferative index measurements to identify molecular determinants responsible for reduced mitochondrial priming at the minimal residual disease stage."

Asst Prof Bhatt acknowledged the efforts of her laboratory research group and expressed appreciation for the funding support provided by the National Medical Research Council of Singapore and the American Society of Hematology for this study.

Source:
Journal reference:

Olesinski, E. A., et al. (2024). Acquired Multidrug Resistance in AML Is Caused by Low Apoptotic Priming in Relapsed Myeloblasts. Blood Cancer Discovery. doi.org/10.1158/2643-3230.bcd-24-0001.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Researchers uncover key genes linked to DCIS progression