Study uncovers rare genetic variants associated with Parkinson's disease

Scientists at deCODE genetics, a subsidiary of AMGEN, have discovered rare sequence variants, predicted to cause a loss of function of ITSN1, that are associated with a high risk of Parkinson's Disease. The findings also support less studied pathways involved in the pathogenesis of the disease.

The study, published today in npj Parkinson's Disease, used whole-genome sequence data from Iceland (deCODE genetics), the UK (UK Biobank), and the US (Accelerating Medicines Partnership Parkinson's disease).

The role of ITSN1, Intersectin-1, is to activate CDC42, a small Rho GTPase involved in the growth and maintenance of dopaminergic neurons and the regulation of vesicle exocytosis of α-synuclein, whose accumulation is a pathological hallmark of Parkinson's Disease. The researchers propose that loss of ITSN1 function may contribute to Parkinson's Disease pathogenesis through inactive CDC42 and its downstream pathways, degeneration of dopaminergic neurons and dysregulated vesicle exocytosis of α-synuclein, and/or through disrupted synaptic vesicle transport via clathrin-mediated endo- and exocytosis. This suggests that targeting CDC42 or its upstream regulator, ITSN1, might offer a therapeutic approach for Parkinson's Disease.

Source:
Journal reference:

Skuladottir, A.T., et al. (2024). Loss-of-function variants in ITSN1 confer high risk of Parkinson’s disease. npj Parkinson's Disease. doi.org/10.1038/s41531-024-00752-9.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Yale study identifies molecular mechanism behind some lissencephaly disorders