Harnessing the power of miRNA for cancer diagnosis and treatment

This study is led by Dr. Shiwei Duan (Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China). His team analyzed literature on miRNA, summarizing the close relationship between these small molecules and cancer. miRNA is a type of non-coding RNA that does not encode proteins, but can target more than 60% of human protein-coding genes. They play crucial roles in cell growth, differentiation, development, and apoptosis, and their dysfunction is closely linked to numerous diseases. Almost all known cancer cells have the ability to control gene expression using miRNAs, making the impact of miRNAs particularly significant in cancer. 

On the technological front of molecular mechanism research, RNA Sequencing Technology and CRISPR/Cas9 have enriched our understanding of miRNA mechanisms and functions. By analyzing relevant data and constructing tools and algorithms, as well as integrating multi-omics data, researchers are continuously driven to explore miRNA targets and mechanisms.

The molecular mechanisms of miRNA are complex and diverse, with interactions with ceRNAs (long non-coding RNAs and circular RNAs), mRNA, RNA-binding proteins (RBPs), and other miRNAs. Beyond their roles inside cells, miRNAs can be secreted into the extracellular fluid and transported to target cells via vesicles. These extracellular miRNAs act as chemical messengers, mediating intercellular communication, thereby amplifying their impact on cancer.

miRNA offers a fresh perspective for cancer diagnosis. It is widely present in body fluids, and numerous studies have shown that its expression is correlated with the occurrence and progression of cancer. Therefore, it is an ideal biomarker with broad applications in cancer detection, prognosis, and disease monitoring.

miRNA is also a therapeutic molecule with broad prospects. In past cancer treatment research related to miRNA, the development of miRNA Mimics and Inhibitors emerged first, followed by the integration of Nanoparticle-Based miRNA Therapy Delivery Systems to improve target specificity, thereby enhancing therapeutic efficacy. CAR-T, as a natural carrier, has been deeply explored by miRNA drug developers.

Drug resistance poses a major challenge in cancer treatment, with research indicating that miRNA is crucial in cancer cells' resistance mechanisms. Intervention strategies targeting drug-resistant miRNAs are becoming a hot topic in emerging research. By integrating the latest technological approaches, such as novel forms of cell death, drug repurposing, combination therapies, recombinant RNA technology, and multivalent RNA nanoparticles, there is hope for new solutions to overcome drug resistance. The continuous emergence of new technologies and interdisciplinary integration is constantly promoting the expansion of miRNA applications.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Breast cancer mortality plummets by 44%, but alarming racial gaps persist