Kumamoto University makes groundbreaking discovery in aging and inflammation

A team at Kumamoto University has made a groundbreaking discovery in the field of aging and inflammation. Japan's aging population is growing at an unprecedented rate, making it crucial to extend healthy lifespans rather than just lifespans. The research focuses on "cellular senescence," a process where cells stop dividing and enter a state associated with chronic inflammation and aging. This cellular state, known as the senescence-associated secretory phenotype (SASP), involves the secretion of inflammatory proteins that accelerate aging and disease, such as dementia, diabetes, and atherosclerosis.

The researchers found that ATP-citrate lyase (ACLY), an enzyme involved in converting citrate to acetyl-CoA, plays a critical role in activating SASP. This discovery was made using advanced sequencing and bioinformatics analyses on human fibroblasts, a type of cell found throughout the body. They demonstrated that blocking ACLY activity, either genetically or with inhibitors, significantly reduced the expression of inflammation-related genes in aging cells. This suggests that ACLY is a crucial factor in maintaining the pro-inflammatory environment in aged tissues.

Furthermore, the study revealed that ACLY-derived acetyl-CoA modifies histones, proteins that DNA wraps around, allowing the chromatin reader BRD4 to activate inflammatory genes. By targeting the ACLY-BRD4 pathway, the researchers were able to suppress inflammation responses in aged mice, highlighting the potential of ACLY inhibitors in controlling chronic inflammation while maintaining healthy aging.

This discovery opens new avenues for developing treatments that specifically target the harmful aspects of aging cells without removing them, offering a promising strategy for managing aging and age-related diseases. The research provides a stepping stone toward therapies that can control cellular aging, promoting longer, healthier lives.

Source:
Journal reference:

Kan Etoh, et al. (2024). Citrate metabolism controls the senescent microenvironment via the remodeling of pro-inflammatory enhancers. Cell Reports. doi.org/10.1016/j.celrep.2024.114496.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Balance on one leg may be the best indicator of neuromuscular aging, new study suggests