New discovery reveals how mutant RAS genes drive tumor growth

Researchers at the National Institutes of Health (NIH) and their collaborators have discovered a new way in which RAS genes, which are commonly mutated in cancer, may drive tumor growth beyond their well-known role in signaling at the cell surface. Mutant RAS, they found, helps to kick off a series of events involving the transport of specific nuclear proteins that lead to uncontrolled tumor growth, according to a study published November 11, 2024, in Nature Cancer.

RAS genes are the second most frequently mutated genes in cancer, and mutant RAS proteins are key drivers of some of the deadliest cancers, including nearly all pancreatic cancers, half of colorectal cancers, and one-third of lung cancers. Decades of research have shown that mutant RAS proteins promote the development and growth of tumors by activating specific proteins at the cell surface, creating a constant stream of signals telling cells to grow.

This is the first study to show that mutated RAS genes can promote cancer in an entirely new way. The finding of the additional role for RAS proteins has exciting implications for improving treatment."

Douglas Lowy, M.D., study author, deputy director of NIH's National Cancer Institute (NCI)

Drugs that block mutant RAS proteins have been available as cancer treatments for only a few years and have been approved by the Food and Drug Administration to treat lung cancer and sarcoma. Although their development was a major scientific success, RAS inhibitors have thus far had a limited impact on patient outcomes, improving survival by only a few months in most people.

Over 35 years ago, a group led by Dr. Lowy contributed to the early studies that identified RAS as a cancer-causing gene and helped explain how it promotes tumor growth. In this new study, the research team found that mutant RAS is directly involved in the process of releasing a nuclear protein called EZH2 from a complex transported from the nucleus to the cytoplasm. Once released, EZH2 facilitates the breakdown of a tumor suppressor protein called DLC1. Blocking mutant RAS stopped EZH2 from being released, restoring the activity of DLC1.

In experiments in human lung cancer cell lines and mouse models of lung cancer, the researchers found that combining RAS inhibitors with different targeted cancer drugs that reactivate DLC1's tumor suppressor activity had potent activity against cancer-;more potent than that of RAS inhibitors alone.

The study also found evidence that mutant RAS proteins perform this same function in other cancer types, suggesting that this mechanism may be a general feature of cancers with mutated RAS genes.

The researchers believe their finding may have potential applications for the treatment of RAS-fueled cancers. They have started to look at how this function for RAS works in pancreatic cancer in particular because there are so few effective treatments for this type of cancer.

"New treatment combinations could one day be developed that take this new role for RAS into consideration," Dr. Lowy said.

Source:
Journal reference:

Tripathi, B. K., et al. (2024). The pro-oncogenic noncanonical activity of a RAS•GTP:RanGAP1 complex facilitates nuclear protein export. Nature Cancer. doi.org/10.1038/s43018-024-00847-5.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New research unravels mitochondria's role in breast cancer metastasis