Groundbreaking method profiles gene activity in the living brain

A groundbreaking method to profile gene activity in the living human brain has been developed by researchers at FutureNeuro, the Research Ireland Centre for Translational Brain Science and RCSI University of Medicine and Health Sciences, in collaboration with international partners.

This innovative approach, Opens in new windowpublished in JCI Insight, opens new avenues for understanding and treating neurological conditions like epilepsy.

Studying gene activity in the brain without requiring invasive tissue samples from surgery or post-mortem donation has been a long-standing challenge in neuroscience. By analysing molecular traces – specifically RNA and DNA – collected from electrodes implanted in the brains of patients with epilepsy and linking these with electrical recordings from the brain, the researchers were able to take a ‘snapshot’ of gene activity in the living brain.

These electrodes, clinically used to pinpoint seizure activity in patients enabling surgical interventions, provide a unique opportunity to link brain activity to the genes being switched on or off in specific regions. The study demonstrates how integrating molecular data with electrical recordings of seizures can enhance our understanding of the brain’s seizure networks, potentially improving the precision of epilepsy surgeries.

Broader research

This study represents a significant advancement in epilepsy research, providing a method to detect active genes within the living brain of individuals with epilepsy. This technology has the potential to complement traditional brain imaging and EEG tests that measure electrical activity in the brain, offering valuable insights to guide surgical decision-making in the treatment of those with epilepsy."

Professor David Henshall, Director of FutureNeuro and Professor of Molecular Physiology and Neuroscience at RCSI

Epilepsy affects approximately 40,000 people in Ireland, with one in three people unable to control seizures through medication. For these individuals, surgical intervention is often the best option, but its success hinges on accurately mapping the regions responsible for seizure activity.

Beyond epilepsy, the study lays the groundwork for broader applications, including research into Alzheimer’s, Parkinson’s, and schizophrenia, where understanding molecular processes in the living brain is vital.

A step forward

The research, led by Professor Henshall and Professor Vijay Tiwari, Professor of Genome Biology at the University of Southern Denmark, also involved a global network of collaborators, including experts from Beaumont Hospital, Blackrock Clinic, Queen’s University Belfast, the University of Southern Denmark, and the Danish Institute for Advanced Study.

It underscores the value of international collaboration and marks a step forward in understanding how our brains function at the molecular level, offering hope for improved diagnosis and care for those impacted by neurological conditions.

This study was funded by the Higher Education Authority (HEA) North-South Research Programme and FutureNeuro.

Source:
Journal reference:

Dwivedi, A. K., et al. (2024). High-resolution multimodal profiling of human epileptic brain activity via explanted depth electrodes. JCI Insight. doi.org/10.1172/jci.insight.184518.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New study challenges the traditional view of gene switches