Discovery has implications for research on restoring mobility to people who have lost motor functions due to spinal cord injury

Yale School of Medicine researchers report in Science this week genetic evidence for the hypothesis that myelination, or formation of a protective sheath around a nerve fiber, consolidates neural circuitry by suppressing plasticity in the mature brain.

This finding has implications for research on restoring mobility to people who have lost motor functions due to spinal cord injury, multiple sclerosis, Lou Gehrig's disease, and other central nervous system disorders.

"The failure of surviving neurons to reestablish functional connection is most obvious after spinal cord injury, but limited nerve cell regeneration and plasticity is central to a range of neurological disorders, including stroke, head trauma, multiple sclerosis, and neurodegenerative disease," said senior author Stephen Strittmatter, professor in the Departments of Neurology and Neurobiology. "Recovery of motor function after serious damage to the mature brain is facilitated by structural and synaptic plasticity."

Strittmatter's laboratory studies how myelin in the central nervous system physically limits axonal growth and regeneration after traumatic and ischemic injury, when blood supply is cut off. A physiological role for the myelin inhibitor pathway has not been defined.

Blocking vision in one eye normally alters ocular dominance in the cortex of the brain only during a critical developmental period, or 20 to 32 days postnatal in mice. Strittmatter's lab, working in collaboration with Nigel Daw, M.D., professor of ophthalmology and neuroscience, and his group, found that mutations in the Nogo-66 receptor (NgR) affect plasticity of ocular dominance. In mice with altered NgR, plasticity during the critical period is normal, but it continues abnormally so that ocular dominance later in development is similar to the plasticity of juvenile stages.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Professor Nancy Ip: Pioneering New Paths in Neurodegenerative Therapy