Single, coordinated mechanism controls production of ribs and associated muscles in embryo

Instituto Gulbenkian de Ciencia researchers reveal process of making ribs

Like all vertebrates, snakes, mice and humans have in common a skeleton made of segments, the vertebrae. But a snake has between 200-400 ribs extending from all vertebrae, from the neck to the tail-end, whereas mice have only 13 pairs of ribs, and humans have 12 pairs, in both cases making up the ribcage. In the latest issue of Developmental Cell, researchers from the Instituto Gulbenkian de Ci-ncia, in Portugal, reveal that, contrary to what was thought, making ribs is not the default state for vertebrates, but is actually an active process of balancing the activities of a remarkable class of genes - the Hox genes.

It was thought that the rib less region of the mouse embryo was the result of a rib-inhibiting programme, driven by Hox10 genes. Indeed, previous studies, in which Hox10 genes were inactivated in the embryo, generated mice with extra ribs. However, by forcing another class of Hox genes (Hox6) to be activated in future rib-less regions of the mouse embryo, Moises Mallo and his team bred mice that also have extra ribs, both in the neck area, and from just after the rib cage, all the way down to the tail, resembling a snake-like skeleton.

'It was an extraordinary, and clear-cut result', says Mallo, 'suggesting that these two groups of Hox genes balance each other out: one actively promotes rib formation to produce the thoracic region, while the other blocks this activity in the lumbar region. Our results have unveiled this balance.'

The researchers went on to unpick the genes involved in this process, and came up with yet another surprising finding: that the whole process relies on first hitting so-called muscle genes in the embryo, which then provide signals to switch on the 'rib' genes to make both ribs and muscle, in a coordinated process.

According to Mallo, 'Our findings reveal a more complicated process than we would have imagined, but one that makes perfect sense, from a functional and evolutionary point of view: it is no good to make ribs without muscle, so, in the embryo, the production of both ribs and their associated muscles is under the control of a single and coordinated mechanism.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Natural nutrients nicotinamide and pyridoxine reverse muscle aging