Interdisciplinary approach leads to breakthroughs in bio nanotechnology research

Focusing on interdisciplinary research is now leading to breakthroughs in bio nanotechnology research. A new method for drug development has become a reality.

Four years ago, the biologist Karen Martinez almost didn't believe in the research project herself when she started with her team working on it, but now it has been proven. Together with colleagues at the Nano-Science Center, her team has been able to combine nanoscale materials and technologies that are traditionally used for electronic devices with individual living cells. The researchers have shown that cells can grow and function on a carpet of small upright needles made of semiconductors - so-called nanowires.

"We have developed a new method that makes it possible for us to see how the cells function when they are impaled on carpets of nanowires. We think that the technique has great potential and that it could be used in laboratories within a couple of years to develop. For example, it could be used by the pharmaceutical industry to test new drugs for a variety of diseases including neurological problems, cancer and heart disease," explains Karen Martinez, who is group leader of the BioNano group, Department of Neuroscience and Pharmacology at the University of Copenhagen.

With this breakthrough, the Danish research group is now at the top of international research in this interdisciplinary field of research, together with a few groups from Harvard, Berkeley (USA), and Lund (Sweden).

"The Nano-Science Center brings together biologists, physicists, pharmacologists and chemists who are working together across traditional research boundaries and this breakthrough at the Nano-Science Center is a direct result of the cultivation of this interdisciplinarity in the long-term strategic focus at the Nano-Science Center," explains the new director of the Nano-Science Center Professor Morten Meldal.

Nanoscience in focus

Nanophysicists Jesper Nyg-rd and Claus S-rensen are in charge of the development of these very small needles - nanowires - with a diameter of approx. 100 nanometers, that is to say 10,000 times smaller than 1 millimeter and Karen Martinez is responsible for the knowledge of the function and handling of cells. The project benefits considerably from the interdisciplinary background of Trine Berthing, PhD student in Nanoscience, who has been working on this project since the beginning of her graduate studies in Nanoscience in 2007.

"We have come much further than I would have predicted just a few years back when the research resembled science fiction. Actually we took a bit of a chance when Trine started, but soon discovered that there was research potential. Now we have a method that makes it possible to incorporate several nanowires in a cell while the cell functions," explains Associate Professor, Karen Martinez, who will continue to investigate the techniques industrial potential, for example, with the help of the start-up company inXell bionics, created by researchers from the University of Copenhagen.

The research has been published in the journal Small and is financed by the University of Copenhagen, The Danish Council for Strategic Research and the Lundbeck Foundation.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Professor Nancy Ip: Pioneering New Paths in Neurodegenerative Therapy