New U-M hESC lines now available for federally-funded research

Six new human embryonic stem cell lines derived at the University of Michigan have just been placed on the U.S. National Institutes of Health's registry, making the cells available for federally-funded research.

U-M now has a total of eight cell lines on the registry, including five that carry genetic mutations for serious diseases such as the severe bleeding disorder hemophilia B, the fatal brain disorder Huntington's disease and the heart condition called hypertrophic cardiomyopathy, which causes sudden death in athletes and others.

Researchers at U-M and around the country can now begin using the stem cell lines to study the origins of these diseases and potential treatments. Two of the cell lines are believed to be the first in the world bearing that particular disease gene.

The three U-M stem cell lines now in the registry that do not carry disease genes are also useful for general studies and as comparisons for stem cells with disease genes. In all, there are 163 stem cell lines in the federal registry, most of them without major disease genes.

Each of the lines was derived from a cluster of about 30 cells removed from a donated five-day-old embryo roughly the size of the period at the end of this sentence. The embryos carrying disease genes were created for reproductive purposes, tested and found to be affected with a genetic disorder, deemed not suitable for implantation and would have otherwise been discarded if not donated by the couples who donated them.

Some came from couples having fertility treatment at U-M's Center for Reproductive Medicine, others from as far away as Portland, OR. Some were never frozen, which may mean that the stem cells will have unique characteristics and utilities.

The full list of U-M-derived stem cell lines accepted to the NIH registry includes:

UM9-1PGD – Hemophilia B

UM17-1 PGD – Huntington's disease

UM38-2 PGD - Hypertrophic Cardiomyopathy (MYBPC3)

UM15-4 PGD - Hydroxysteroid Dehydrogenase 4 Deficiency, a rare hormone disorder

UM11-1PGD - Charcot-Marie-Tooth disease Type 1A

UM4-6 – no disease gene

UM14-1 – no disease gene

UM14-2 – no disease gene

"Our last three years of work have really begun to pay off, paving the way for scientists worldwide to make novel discoveries that will benefit human health in the near future," says Gary Smith, Ph.D., who derived the lines and also is co-director of the U-M Consortium for Stem Cell Therapies, part of the A. Alfred Taubman Medical Research Institute.

"Each cell line accepted to the registry demonstrates our attention to details of proper oversight, consenting, and following of NIH guidelines," says Sue O'Shea, Ph.D., professor of Cell and Developmental Biology at the U-M Medical School, and co-director of the Consortium for Stem Cell Therapies.

U-M is one of only three academic institutions to have disease-specific stem cell lines listed in the national registry, says Smith, who is a professor in the Department of Obstetrics and Gynecology at the University of Michigan Medical School. The first line, a genetically normal one, was accepted to the registry in February.

Each line is the culmination of years of preparation and cooperation between U-M and Genesis Genetics, a Michigan-based genetic diagnostic company. This work was made possible by Michigan voters' November 2008 approval of a state constitutional amendment permitting scientists to derive embryonic stem cell lines using surplus embryos from fertility clinics or embryos with genetic abnormalities and not suitable for implantation.

The amendment also made possible an unusual collaboration that has blossomed between the University of Michigan and molecular research scientists at Genesis Genetics, a company that has grown in only eight years to become the leading global provider of pre-implantation genetic diagnosis (PGD) testing. PGD is a testing method used to identify embryos carrying the genetic mutations responsible for serious inherited diseases.

Genesis Genetics performs nearly 7,500 PGD tests annually. Under the arrangement between the company and U-M, patients with embryos that test positive for a genetic disease now have the option of donating those embryos to U-M if they have decided not to use them for reproductive purposes and the embryos would otherwise be discarded.

The agreement was worked out between U-M's Smith and Mark Hughes, M.D., Ph.D., founder and president of Genesis Genetics and a pioneer in the field of pre-implantation genetic diagnosis. "These are very precious cells, and it would be unconscionable not to take advantage of such an opportunity for medical science and the cure of disease," Hughes says.

SOURCE University of Michigan Health System      

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
The potential to optimize laboratory testing and operations with automation and AI