WUSTL's Wang receives NSF grant to study oxygen consumption rates of individual cells

When scientists study cells, they need to know how much oxygen each cell consumes to determine its metabolism. However, existing technology limits this study to groups of cells, not individual cells. Lihong Wang, PhD, plans to change that.

Wang, the Gene K. Beare Distinguished Professor of Biomedical Engineering at Washington University in St. Louis, has received a three-year, $300,000 grant from the National Science Foundation (NSF) to study oxygen consumption rates of individual cells using photoacoustic microscopy, a novel imaging technology he developed that uses light and sound to measure change.

"When you image a group of cells, you assume all cells are identical, but they are not - cells are heterogeneous and consume oxygen differently," says Wang, who also is affiliated with the Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine. "We will measure oxygen consumption on a per-cell basis, but measure many cells at the same time, giving us high specificity and a high-speed, high-yield throughput. As a result, we will be able to rapidly map distributions of cellular metabolism."

Wang and his collaborators will use hemoglobin, a protein in red blood cells that carries oxygen, as a biocompatible sensor to determine oxygen consumption. Hemoglobin changes color when oxygenated or deoxygenated. The color change is too slight to see using conventional microscopy, confocal microscopy or two-photon microscopy, but photoacoustic microscopy is exquisitely sensitive to color change, Wang says.

"Once cells are loaded into a matrix of wells, all we have to do is to use light-induced ultrasound to sense the color of hemoglobin next to each well," Wang says. "The rate of change in color of hemoglobin is used to compute the consumption rate of oxygen by each cell."

The proposed technology can lead to further understanding of a wide range of biological systems, from single cells to ecosystems, Wang says. Potential applications include gauging cellular health and metabolic state for stress response and in toxicity studies. Environmentally, oxygen-linked respiration is the main sink of organic matter in nature, and it can be considered as a fundamental component of global element cycling. Differences in oxygen uptake within complex natural communities can lend insights into the use of energy sources in the environment, as well as into primary production.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Anxiety and negative emotions reduced by brain circuit that consciously slows breathing