NeuroPhage engineers series of molecules with potential to treat most neurodegenerative diseases

Researchers from NeuroPhage Pharmaceuticals, Inc. have engineered a series of molecules with the potential to treat most neurodegenerative diseases that are characterized by misfolded proteins, such as Alzheimer's, Parkinson's and Huntington's diseases. These molecules are based on what the Company calls a general amyloid interaction motif, or GAIM, which recognizes a characteristic common to many toxic, misfolded proteins, not just one type of misfolded protein. This approach provides NeuroPhage with an array of therapeutic targets, so that a number of pathologies, such as amyloid beta plaques, tau tangles and alpha-synuclein Lewy bodies, can all be addressed simultaneously with a single drug candidate. In addition, the Company has shown that the GAIM molecules can not only prevent the formation of new toxic protein aggregates but can also clear existing aggregates in the form of both soluble oligomers and insoluble fibers, such as plaques and tangles.

"The research published today describes GAIM, NeuroPhage's unique approach to treat diseases characterized by misfolded proteins. GAIM has the potential to provide a more robust response than previous therapies because it enables the simultaneous targeting of multiple pathologies within a single disease," said Dr. Richard Fisher, Chief Scientific Officer at NeuroPhage.

This novel and revolutionary approach was published online today in the Journal of Molecular Biology. The publication, "A bacteriophage capsid protein provides a general amyloid interaction motif (GAIM) that binds and remodels misfolded protein assemblies," was authored by Rajaraman Krishnan et al. For more information, please visit: http://bit.ly/1lqwIUg.

"Symptoms of neurodegenerative diseases often appear well after the troublesome aggregates have begun to accumulate in the brain. By then, therapies that only target newly forming aggregates are likely to only slow the progression of the disease and are believed to be too late once the aggregates are formed," said Dr. Gregory A. Petsko, Professor of Neurology at Weill Cornell Medical College in New York City, and Tauber Professor of Biochemistry and Chemistry, Emeritus, at Brandeis University in Waltham, Massachusetts. "Therapies based on GAIM would represent a completely new paradigm in the treatment of many neurodegenerative diseases with their potential to ameliorate existing symptoms and prevent disease progression. The hope is this will eventually lead to a real treatment for Alzheimer's disease, but for now, the science behind it is quite compelling."

Researchers used an array of techniques, including X-ray fiber diffraction and nuclear magnetic resonance spectroscopy, to demonstrate the activities of GAIM. They discovered that GAIM effectively binds to multiple types of misfolded proteins during their formation in such a way that prevents new toxic protein aggregates from forming. In addition, upon incubating GAIM with various misfolded proteins, the researchers observed that GAIM disrupted these assemblies of misfolded proteins by causing a conformational change in their structures. This structural change could enable the body's natural disposal mechanism to recognize and clear the misfolded proteins, which in theory, would enable the brain to return to a more normal state. The ability to destabilize pre-existing aggregates of multiple types of misfolded proteins is unique in the field.

The discovery of GAIM has led to the creation of NeuroPhage's lead candidate, NPT088, which is the GAIM motif fused to a portion of a human antibody. The result is a potential therapeutic that can be easily delivered to patients. NeuroPhage has accumulated extensive preclinical data on this candidate, demonstrating its efficacy across disease models of Alzheimer's, Parkinson's and related diseases characterized by aggregation of the tau protein. NeuroPhage expects that NPT088 will be ready for human studies in late 2015.

"With recent advances in imaging agents for beta-amyloid and tau in Alzheimer's disease, we believe we should be able to demonstrate clinical proof of mechanism in a Phase 1b study with NPT088," said Jonathan Solomon, CEO at NeuroPhage. "If successful, we would then have the opportunity to pursue many therapeutic options in several neurodegenerative diseases of protein aggregation."

Source:

MacDougall Biomedical Communications, Inc.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Could autophagy enhancement slow aging and combat Alzheimer's?