Princeton researchers develop cobalt-catalyzed reaction that may give unprecedented access to cyclobutanes

Researchers at Princeton have developed a cobalt-catalyzed [2π+2π] reaction that may give unprecedented access to cyclobutanes, four-membered ring-containing molecules. Previous [2π+2π] reactions, so named for their carbon-carbon double bond starting materials called alkenes, have been limited in scope, leaving many cyclobutane compounds out of reach, along with any potentially beneficial properties.

Led by Paul Chirik, the Edwards S. Sanford Professor of Chemistry, the team published the cobalt-catalyzed [2π+2π] reaction and a thorough investigation of its mechanism in the Journal of the American Chemical Society on June 1.

"Because examples of this reaction are so rare, we wanted to understand why these cobalt complexes were special and how they worked in the reaction," said Valerie Schmidt, lead author on the article and a postdoctoral researcher in the Chirik lab.

The new cobalt-catalyzed reaction overcame limitations that have plagued other transition metal catalyzed methods, such as poor selectivity or requiring very reactive alkenes as starting materials. The research team suspected their success came from the redox active bis(imino)pyridine ligands attached to cobalt, which are capable of passing electrons to and from the metal.

The Chirik group has used these redox active ligands previously, attached instead to iron to catalyze a [2π+2π] reaction reported in 2006. But the iron catalyst is highly sensitive to air and moisture, an issue that could be mitigated by switching to a less reactive metal like cobalt.

Replacing iron for cobalt presented a unique challenge in analysis because it altered the complex's overall magnetic state from diamagnetic to paramagnetic. Unlike diamagnetic compounds, paramagnetic compounds can be difficult to identify by nuclear magnetic resonance (NMR) spectroscopy, a technique that uses a strong magnet to pulse atomic nuclei to reveal their environments, and a primary tool for characterizing molecules.

"We really had to be creative in finding ways to confirm our hypotheses about the catalyst," Schmidt said. One extremely useful tool, analogous to nuclear magnetic resonance but pulses electrons instead of nuclei, was electron paramagnetic resonance (EPR). This technique allowed the researchers to track the unpaired electrons, called radicals, throughout the reaction.

Additional data gathered from theoretical calculations to kinetic studies to x-ray crystal structure elucidation allowed the research team to sketch out a detailed reaction mechanism. They proposed that the cycle begins with successive coordination of the two tethered alkenes to the metal center.

Coordination of the second alkene was crucial, Schmidt explained, because it changed cobalt's geometry, from square planar to tetrahedral, and effectively moved the unpaired electron from the ligand to the metal. Only then can the metal based radical promote the carbon-carbon forming event and push the reaction forward.

This action leads to the formation of a metallacycle--a pentagon shaped ring of four carbons and one cobalt atom. Cobalt is then squeezed out of the ring to release the final four-membered cyclobutane product in a process called reductive elimination. After testing a series of catalysts with varying size and electronic properties, the researchers suggested that reductive elimination was the turnover-limiting step, essentially the bottleneck of the reaction.

Armed with a deeper understanding of the cobalt catalyst system, the researchers hope to continually enhance its performance. "We want to make it as easy as possible to access cyclobutane containing molecules. Without this ability, we really have no idea what we are missing out on," Schmidt said.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Heart health benefits soar with regular sleep schedules, research finds