UGA investigators find viable treatment for prostate cancer

Researchers at the University of Georgia have created a new therapeutic for prostate cancer that has shown great efficacy in mouse models of the disease. They published their findings recently in the journal Nanomedicine: Nanotechnology, Biology and Medicine.

The treatment is designed to inhibit the activity of a protein called PAK-1, which contributes to the development of highly invasive prostate cancer cells.

Aside from non-melanoma skin cancer, prostate cancer is the most common cancer among men in the U.S., according to the Centers for Disease Control and Prevention. It is also one of the leading causes of cancer death among men of all races.

"PAK-1 is kind of like an on/off switch," said study co-author Somanath Shenoy, an associate professor in UGA's College of Pharmacy. "When it turns on, it makes cancerous cells turn into metastatic cells that spread throughout the body."

With the help of Brian Cummings, an associate professor in UGA's College of Pharmacy, the researchers developed a way to package and administer a small molecule called IPA-3, which limits the activity of PAK-1 proteins.

They enveloped the IPA-3 molecule in a bubble-like structure called a liposome and injected it intravenously. The liposome shell surrounding IPA-3 ensures that it is not metabolized by the body too quickly, allowing the inhibitor enough time to disrupt the PAK-1 protein.

The researchers found that this molecule significantly slowed the progression of cancer in mice, and it also forced the cancerous cells to undergo apoptosis—a kind of programmed cell death.

"When we first began these experiments, we injected IPA-3 directly into the bloodstream, but it was absorbed so quickly that we had to administer the treatment seven days a week for it to be effective," Shenoy said. "But the liposome that Dr. Cummings created makes the IPA-3 much more stable, and it reduced the treatment regimen to only twice a week."

The preliminary results suggest that IPA-3 might be a viable treatment for prostate cancer in humans, but Shenoy cautions that much work must be done before human clinical trials can begin.

"The results of our experiments are promising, and we hope to move toward clinical trials soon," he said, "but we must figure out what side effects this treatment may have before we can think about using it in humans."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
CBD can be used safely in women with advanced breast cancer and clinical anxiety