Genome-wide studies reveal evolutionary conserved enzyme facilitates DNA replication

Genome-wide studies of fission yeast (Schizosaccharomyces pombe) suggest that the evolutionary conserved enzyme Pfh1 helicase facilitates DNA synthesis by tracking along with the replication apparatus, promoting intact DNA synthesis at hard-to-replicate sites and consequently suppressing DNA damage. The findings are published in PLOS Genetics.

Genome organization similarities of fission yeast and humans suggest that human DNA replication likely also need such helicases at hard-to-replicate sites. According to the new findings, human PIF1 is a top nominee for this task.

"Using genome-wide analyses, we show that the Pfh1 DNA helicase promotes fork progression and suppresses DNA damage at regions called 'hard-to-replicate' sites," says Nasim Sabouri, researcher at the Department of Medical Biochemistry and Biophysics at Umeå University and co-author of the study. "Hard-to replicate sites exists naturally in all genomes investigated. These natural impediments slow fork movement if they are not removed and may cause DNA breakage and genome instability, one of the hallmarks of cancer. Pfh1 possesses the unique ability to promote fork progression through these natural impediments."

Together with her graduate student, as well as researchers from Princeton and Vanderbilt universities, Nasim Sabouri used genome-wide studies and mass spectrometry to study DNA replication mechanisms in fission yeast.

The findings also reveal that Pfh1 interacts with many components of the replication machinery. Pfh1 helicase occupy many common regions genome-wide with one of the main polymerases involved in DNA replication. These are not only hard-to-replicate sites, but also sites where replication is not Pfh1-dependent. This prevalence suggests that Pfh1 is in close proximity of the replication apparatus during DNA synthesis and promotes fork progression when necessary.

"Because human cells also contain these hard-to-replicate regions, they also likely require replicative accessory DNA helicases to facilitate replication and suppress DNA damage at these sites. We believe that hPIF1 is a good candidate for this role, as Pfh1 and hPIF1 both belong to the Pif1 family helicases," says Nasim Sabouri.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New method detects human fecal contamination in water