Research sheds new light on potential of anti-inflammatory cytokines in treating aging-related metabolic diseases

New research published online in The FASEB Journal suggests that the anti-inflammatory molecule IL-10 may do more than just reduce inflammation. In the report, scientists use mice to show that the molecule may also help reduce the normal insulin resistance that is associated with aging. If true in humans, this discovery may represent a significant step toward improving the quality of life as people age.

"I hope that our research findings provide important new insights into the pathogenesis of insulin resistance that develops in aging and, more importantly, shed new light toward therapeutic potential of anti-inflammatory cytokines in the treatment of aging-associated metabolic and muscle diseases," said Jason K. Kim, Ph.D., a researcher involved in the work and Professor of Molecular Medicine and Director of the National Mouse Metabolic Phenotyping Center at the University of Massachusetts Medical School in Worcester, Massachusetts.

To make their discovery, Kim and colleagues used transgenic mice that overexpress an anti-inflammatory cytokine, IL-10, in skeletal muscle, and found that these mice were protected from aging-associated inflammation and insulin resistance in that tissue. Insulin resistance is an important pathophysiological event in the process of aging and contributes to loss of muscle function and muscle mass with aging. Insulin resistance is also a major characteristic of type 2 diabetes and may be responsible for increased prevalence of type 2 diabetes in the aging population. Therefore, these findings implicate the potential therapeutic role of an anti-inflammatory regimen to treat insulin resistance, which could have a significant impact on the quality of life in aging humans.

"My colleagues at the University of Massachusetts Medical School have come up with a very interesting new lead, placing IL-10 into the multifaceted landscape of insulin resistance" said Thoru Pederson, Ph.D., Editor-in-Chief of The FASEB Journal. "The hypothesis that IL-10 may even be acting outside its canonical anti-inflammatory axis is fascinating to ponder."

Source: Federation of American Societies for Experimental Biology

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Revolutionary AI predicts aging and disease from DNA patterns