Researchers discover how epigenetic lesion can lead to T-cell acute lymphoblastic leukemia

Researchers from the Epigenetics and Cancer Biology Program (PEBC) led by Dr. Manel Esteller at the Bellvitge Biomedical Research Institute (IDIBELL) have discovered how an epigenetic lesion can lead to T-cell acute lymphoblastic leukemia. The article, published in the journal Leukemia, leader in the field of hematology, correlates the lesion with the activation of a powerful oncogen capable of malignizing this type of cells of the immune system.

Every two minutes, a person is diagnosed with a blood cell cancer - a leukemia, a lymphoma or a myeloma-, constituting 11% of all the tumors detected every year. T-cell acute lymphoblastic leukemia (T-ALL) creates alterations in the normal development of T lymphocytes, which are the cells responsible for defense against infections. This type of leukemia, which may appear in both children and adults, is characterized by its aggressive behavior. There are certain genetic alterations responsible for up to a third of the cases, but the molecular changes involved in the rest are still unknown.

"We have found that in 60% of acute type T leukemias, T lymphocytes present a loss of activity in a gene called NUDT16, whose normal function is to degrade other potentially dangerous genes. The lack of NUDT16 monitoring in these T lymphocytes allows a widely recognized cancer-causing gene, called C-MYC, to act freely and transforms these healthy cells into cancer cells", explains Dr. Esteller, ICREA Researcher and Professor of Genetics at the University of Barcelona.

"It is interesting to take into account the NUDT16 gene is not genetically damaged, so it could be reactivated with epigenetic drugs already used in other types of leukemia and lymphoma. It would also be worthwhile to test whether these leukemias, being so dependent on the C-MYC oncogene, would also be more sensitive to drugs targeting this protein", adds the IDIBELL researcher.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Barcoding small extracellular vesicles with new CRISPR-based system