Study sheds light on mechanisms that maintain gene activity in embryonic stem cells

Researchers from Turku, Finland, have discovered new information about the mechanisms which maintain gene activity in human embryonic stem cells. The observed mechanism is essential for the self-renewal of stem cells. The two research groups who made the discovery, led by Senior Researcher, Docent Riikka Lund and Academy Professor Riitta Lahesmaa, work at the Turku Centre for Biotechnology. The study was conducted in co-operation with researchers from Aalto University, the University of Tampere and Karolinska Institutet.

Embryonic stem cells have a unique ability to form all the cell and tissue types of an adult human body. The mechanisms that control this ability have been the target of active research, as stem cells are expected to be an important tool in future medicine.

The research results of the research groups of Lund and Lahesmaa have been reported in the Stem Cell Reports journal.

- Our results provide new insights into the mechanisms of how POLR3G gene regulates stem cell state, which in turn sheds light on the complex mechanisms with which human embryonic stem cells both self-renew and maintain the ability to differentiate. The results point to indirect genomic regulatory mechanisms which are important for embryonic stem cells and maintain gene expression, say Riikka Lund and Riitta Lahesmaa.

Stem cell research is one of the central research areas of modern medicine. The current and most important applications of stem cell research are related to disease diagnostics and treatment. For example, one of the goals of stem cell research is to develop methods for the replacement of damaged tissues in the future.

Understanding the mechanisms that regulate the self-renewal and differentiation of stem cells is important, in order that stem cells can be effectively and safely utilized in medical applications in the future.

Source: https://www.utu.fi/en/news/news/Pages/New-Insights-into-Mechanisms-Regulating-Gene-Expression-in-Embryonic-Stem-Cell.aspx

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study shows how a single defective BRCA1 gene accelerates cancer development