Study lays foundation for treating drug, alcohol addicts with noninvasive brain stimulation

In a study investigating the use of transcranial magnetic stimulation (TMS) for drug addiction, researchers at Medical University of South Carolina are the first to demonstrate that the noninvasive brain stimulation technique can dampen brain activity in response to drug cues in chronic alcohol users and chronic cocaine users. The findings are published in Biological Psychiatry: Cognitive Neuroscience and Neuroimaging.

Although the last 50 years of clinical and preclinical research have demonstrated that addiction is a brain disease, there are still no neural circuit-based treatments for substance dependence or the brain functions involved in the disorder. "Here, for the first time, we demonstrate that a new non-invasive brain stimulation technique may be the first tool available to fill this critical void in addiction treatment development," said senior author Colleen Hanlon, PhD.

Elevated brain activity in response to drug cues--referred to as cue reactivity--occurs with many types of drugs, including nicotine, alcohol, marijuana, and cocaine. Cue reactivity also predicts relapse in addiction, so treatment approaches targeting the neural circuitry related to cue reactivity may directly impact cue-induced relapse in patients.

"Therefore, these results have a tremendous potential to impact both basic discovery neuroscience as well as targeted clinical treatment development for substance dependence," said Dr. Hanlon.

First author of the paper Tonisha Kearney-Ramos, PhD, and colleagues performed two independent studies at the same time, one involving 25 people with cocaine use disorder and the other involving 24 people with alcohol use disorder. The participants received one session of TMS, which targeted magnetic stimulation to circuitry critical for drug-taking behaviors--the ventromedial prefrontal cortex. The real stimulation session was compared against a sham session that mimicked the experience of receiving TMS without actual brain stimulation.

Brain imaging before and after TMS revealed that when alcohol users viewed images of alcohol-related cues, such as a liquor bottle, the single TMS session significantly reduced their drug cue reactivity. The same was true for cocaine users when viewing images of cocaine-related cues.

"Since cue reactivity has previously been associated with abstinence, these studies suggest a common mechanism for treatment effects across disorders, with fMRI serving as a promising neural readout of treatment effects," said Cameron Carter, MD, Editor of Biological Psychiatry: Cognitive Neuroscience and Neuroimaging.

However, it is still unclear if the changes in brain activity observed in the study will translate to reduced drug or alcohol use. The participants did not report any changes in their drug or alcohol craving after TMS. The authors think that repeated sessions of the targeted stimulation may be needed to see changes in self-reported craving. The researchers hope to answer this question in an ongoing clinical trial involving multiple TMS sessions in cocaine users.

In addition to substance abuse, elevated cue-reactivity is a core symptom of many diseases, such as post-traumatic stress disorder, generalized anxiety disorder, traumatic brain injury, smoking, and obesity, said Dr. Hanlon. "Therefore, the treatment described in this manuscript may have implications far beyond the substance abuse field."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New study unveils why glioblastoma becomes resistant to treatment