New approach to destroy HIV reservoirs

Current HIV treatments need to be taken for life by those infected as antiretroviral therapy is unable to eliminate viral reservoirs lurking in immune cells. Institut Pasteur scientists have identified the characteristics of CD4 T lymphocytes that are preferentially infected by the virus - it is their metabolic (or energy-producing) activity1 that enables the virus to multiply. Thanks to metabolic activity inhibitors, the researchers have managed to destroy these infected cells, or "reservoirs", ex vivo. Their findings were published in the journal Cell Metabolism on December 20, 2018.

Current HIV treatments need to be taken for life by those infected as antiretroviral therapy is unable to eliminate viral reservoirs lurking in immune cells. Institut Pasteur scientists have identified the characteristics of CD4 T lymphocytes that are preferentially infected by the virus - it is their metabolic (or energy-producing) activity[1] that enables the virus to multiply. Thanks to metabolic activity inhibitors, the researchers have managed to destroy these infected cells, or "reservoirs", ex vivo. Their findings were published in the journal Cell Metabolism on December 20, 2018.

The antiretroviral treatment used today is designed to block HIV infection but it is not able to eliminate the virus from the body. The virus remains in reservoirs - the CD4 T lymphocyte immune cells, the main targets of HIV. However, the virus does not infect all types of CD4 cell and until now the reason for this was not well known. In this study, scientists from the HIV, Inflammation and Persistence Unit at the Institut Pasteur and colleagues have identified the characteristics of the different CD4 subpopulations, which are associated with HIV infection.

The more the CD4 cells are differentiated, or experienced, the more they need to produce energy to perform their function. Experiments have shown that it is the metabolic activity of the cell, and in particular its glucose consumption, that plays a key role in susceptibility to HIV infection. The virus primarily targets cells with high metabolic activity. To multiply, it hijacks the energy and products provided by the cell.

This requirement constitutes a weakness for the virus and could be exploited to tackle infected cells. Scientists succeeded in blocking the infection ex vivo thanks to metabolic activity inhibitors that have already been investigated in cancer research.

"We have observed ex vivo that, thanks to certain metabolic inhibitors, the virus is no longer able to infect cells and amplification is halted in reservoirs of patients receiving antiretroviral treatment."

Asier Saez-Cirion, coordinator of the study

This research opens new ways towards possible remission through the elimination of reservoir cells. The next research phase will involve assessing the potential of these metabolic inhibitors in vivo.​​

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
African nations must take ownership of HIV response to reduce disease burden