Researchers discover previously unknown mechanism by which cells can sense oxygen

Researchers from the University of Oulu and Harvard University have found a previously unknown mechanism by which cells in the body sense oxygen. Lack of oxygen had a direct influence on the functioning of genes, and prevented cell differentiation. This observation will open up new opportunities for the development of cancer drugs. The study was published in the prestigious Science journal.

At the heart of the finding are enzymes called histone demethylases, whose task is to regulate the structure of chromatin, i.e. DNA and the attached proteins. The researchers demonstrated that the lack of oxygen prevents certain histone demethylases from working, as a result of which cells are unable to differentiate.

This new finding can be utilized in the development of novel cancer drugs. Cancer cells are typically undifferentiated, and chromatin abnormalities have been found in many cancers.

"Oxygen levels are often low in tumor tissues because of their rapid growth and inadequate vascularity, and, in addition, histone demethylases in many cancer cells are either mutated or missing altogether," says MD, PhD Tuomas Laukka, who studied the subject in his doctoral dissertation.

It has been known that the lack of oxygen stops the differentiation of cells. A good example of this are stem cells, which are undifferentiated cells typically located in the most oxygen-poor 'niches' of the human body. Now, for the first time, researchers managed to demonstrate a direct link between oxygen content, histone demethylase activity, gene function and cell differentiation.

"For the first time, we showed that the amount of oxygen has a direct effect on histone demethylase activity. This effect was previously believed to be indirect," Professor Peppi Karppinen from the University of Oulu says.

According to Karppinen, this finding will shape the perceptions of how the body senses oxygen. Through evolution, animals have developed an oxygen sensing method with a protein named HIF at the center. It is activated when the blood oxygen level drops. However, this system does not exist in plants. Instead, they have histone demethylases. It is possible that histone demethylases are an earlier method of oxygen sensing in living organisms, preceding the HIF proteins.

Next, the researchers intend to take a closer look at why some histone demethylases are more dependent on oxygen than others.

Karppinen, who uses the name Koivunen in scientific articles, and her research team have conducted pioneering research into oxygen sensors in the body and pharmaceutical development for almost 20 years.

Source: https://www.oulu.fi/en

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Adding high-dose IV vitamin C to chemotherapy can boost survival for pancreatic cancer patients