Biochemical switches could be triggered to treat pathology of IBM, ALS and FTD

St. Jude Children's Research Hospital scientists have found that the enzymes ULK1 and ULK2 play a key role in breaking down cell structures called stress granules, whose persistence leads to toxic buildup of proteins that kill muscle and brain cells. Such buildup is central to the pathology of three related diseases: inclusion body myopathy (IBM), amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD).

IBM causes weakness in arm and leg muscles. ALS, also known as Lou Gehrig's disease, causes paralysis due to the death of nerve cells controlling voluntary muscles. FTD is a form of dementia that damages areas of the brain associated with personality, behavior and language.

Led by St. Jude researcher Mondira Kundu, M.D., Ph.D., an associate member of the St. Jude Department of Pathology, the team published their findings online in the journal Molecular Cell.

Stress granules are biological "storm shelters" that temporarily protect genetic molecules and proteins when the cell's health is under threat from heat, chemicals or infection. Such granules normally disassemble when the stress is removed, but mutations that cause malfunction in the disassembly machinery can cause them to persist. One such mutation is in a gene called VCP, and the St. Jude researchers found that ULK1/2 is a key activator of VCP. Thus, they believe that drugs to boost those enzymes could help treat the pathology of IBM, ALS and FTD.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
International team releases recommendations for AI use in neuro-oncology