Long noncoding RNA can protect our metabolism against metabolic complications

Unlike what we commonly refer to as 'genes', these phantom genes or 'Long noncoding RNA' (LncRNAs) do not lead to the production of proteins that our cells, and thus our entire bodies are made of.

Previously, it was believed that LncRNAs served no major purpose in cells, but new research now shows that one of these LncRNAs termed 'LincIRS2' is important for safeguarding our metabolism as LincIRS2 loss favors development of metabolic complications in mice.

  • In my estimate, only the function of less than 100 of the nearly 60,000 LncRNAs encoded in our genomes has been truly understood says Jan-Wilhelm Kornfeld, Danish Diabetes Academy (DDA) professor for Molecular Biology of Metabolic Diseases at University of Southern Denmark.
  • In clear comparison, researchers have largely understood the function of the 20,344 genes that encode proteins.
  • That's why it's so exciting that we were able to identify the key role of this particular LncRNA using mice as a model organism, he says.
  • In addition, we were able to delineate a new, exciting mechanisms for how LncRNAs themselves are controlled.

Editing mice with CRISPR

Using the 'molecular scissor' CRISPR/Cas9, Jan-Wilhelm Kornfelds research team succeeded in cutting out LincIRS2 from the mouse's genome.

Next, the researchers observed that mice lacking LincIRS2 developed metabolic complications like elevated blood sugar levels when the LncRNA had been deactivated. Conversely, when performing treatments that activate LincIRS2, mice maintained healthy blood sugar levels even when becoming obese.

  • It is difficult to predict exactly how this new knowledge can be used, but it is intriguing to speculate that restoring or inhibiting specific LncRNAs could be used to treat diabetic patients or other metabolic disorders one day, says Jan-Wilhelm Kornfeld.

His research team just published these new findings in the prestigious journal Nature Communications. The lead author of the article is Dr. Marta Pradas-Juni, who is a postdoc in Jan-Wilhelm Kornfelds' research team.

Fact: what is a long noncoding RNA?

DNA serves as blueprint for producing proteins that constitute the essential building blocks all cells are made of. The molecular intermediary that converts DNA information into proteins is called RNA. Thus, RNA's primary purpose is to translate the 'genes' DNA into protein.

In our bodies, 20,344 different genes are specifically designed to create the many different proteins that our bodies require. The majority of these so-called protein-coding RNAs have been mapped by scientists. That is why, we today largely understand exactly which proteins these RNAs give rise to.

However, nearly 60,000 RNAs called 'Long noncoding RNAs' are written into our genomes that never contribute to the formation of a protein. How they function, and how they are involved in disease development is largely unknown.

Source:
Journal reference:

Pradas-Juni, M. et al. (2020) A MAFG-lncRNA axis links systemic nutrient abundance to hepatic glucose metabolism. Nature Communications. doi.org/10.1038/s41467-020-14323-y.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Novel glucose-sensitive membrane offers improved insulin regulation for diabetic patients