CEL-SCI collaborates with UGA Center for Vaccines and Immunology to develop LEAPS COVID-19 immunotherapy

CEL-SCI Corporation announced today it has signed a collaboration agreement with the University of Georgia’s Center for Vaccines and Immunology to develop LEAPS COVID-19 immunotherapy. CEL-SCI’s immunotherapy candidate aims to treat patients at highest risk of dying from COVID-19. The collaboration will commence with pre-clinical studies based on the experiments previously conducted with LEAPS immunotherapy in collaboration with the National Institutes for Allergies and Infectious Diseases (NIAID) against another respiratory virus, H1N1, involved in the 2009 H1N1 flu pandemic. Those successful studies demonstrated that LEAPS peptides, given after virus infection has occurred, reduced morbidity and mortality in mice infected with H1N1.

It is suggested, based on studies with H1N1, that a LEAPS coronavirus - SARS-CoV-2 immunotherapy may reduce or arrest the progression of the SARS-CoV-2 virus infection and prevent tissue damage from inflammation resulting from lung infection by the virus. By stimulating the correct immune responses to the COVID-19-causing virus without producing unwanted inflammatory responses associated with lung tissue damage, LEAPS immunotherapy may be particularly beneficial in those patients who are at highest risk of dying from COVID-19.

We are eager to commence these studies, which if successful, may lead to clinical trials in humans to address the immediate and critical need to treat COVID-19 in the most vulnerable patients. We are very pleased and honored to partner with Dr. Ted M. Ross and his team and the University of Georgia Center for Vaccines and Immunology. Their world-renowned expertise and world-class facilities will accelerate the development of LEAPS COVID-19 immunotherapy.”

Geert Kersten, CEL-SCI CEO

The University of Georgia (UGA) Center for Vaccines and Immunology (CVI) brings together a diverse, world-renowned team of experts in the areas of infectious disease, veterinary medicine, ecology and public health. The university’s world-class biocontainment research resources are coupled with the expertise of CVI investigators who focus on translational studies to test and assess the efficacy of vaccines and immunotherapies in development by industry, governmental and academic institutions. CEL-SCI’s COVID-19 studies at UGA will be led by Principal Investigator Ted M. Ross, PhD, Director of the Center for Vaccines and Immunology, Georgia Research Alliance Eminent Scholar, and Professor of Infectious Diseases at the University of Georgia. Dr. Ross is a world-renowned key opinion leader in new vaccine technologies intended to protect against all strains for influenza and life-threatening viruses. Dr. Ross has published more than 160 papers and book chapters on infectious disease and vaccine development. He has been an invited speaker at more than 130 national and international conferences, and he participates in several vaccine working groups, including at the U.S. National Institutes of Health, U.S. Centers for Disease Control and Prevention and the World Health Organization.

LEAPS has the potential to be a powerful tool against SARS-CoV-2, the causative agent of COVID-19, based on its dual anti-viral and anti-inflammatory properties. Combining the prior pre-clinical data of LEAPS against H1N1 with our advancing knowledge of COVID-19, we aim to rapidly evaluate this technology’s potential to meet the urgent need to treat patients at greatest risk of dying from this global pandemic. The University of Georgia’s biocontainment labs at the Center for Vaccines and Immunology are ideally suited for these studies, and will serve as critical assets in this collaboration with CEL-SCI.”

Ted M. Ross, Ph.D., Director of the Center for Vaccines and Immunology, Georgia Research Alliance Eminent Scholar, and Professor of Infectious Diseases at the University of Georgia

CEL-SCI’s studies will utilize the LEAPS peptide approach that is unique in its proven ability in animals to elicit both a cell mediated antiviral response and an anti-inflammatory immunomodulating response by activating CD8 T lymphocytes. Previous studies showed that LEAPS immunogens can prevent lethal infection by herpes simplex virus (HSV) and influenza A (H1N1) and stop the inflammatory disease progression of rheumatoid arthritis in animal models. LEAPS peptides against HSV demonstrated that the T cell response was sufficient to prevent viral disease, and if there was residual virus production, anti-viral antibody was generated to further control the spread of the virus.

The proposed LEAPS peptides for the COVID-19 study are directed towards antigens within the NP protein of SARS-Cov-2 virus that elicit cytolytic T cell responses. Unlike the viral glycoprotein “spike” antigens which are important for antibody-based vaccines, these NP-antigens are less variable between viral strains and less likely to change in response to antibodies elicited by prior infection or other vaccines. Cytolytic T cell responses attack the virus infected cellular “factories” within the infected host in order to eliminate the source of virus and help subdue the infection.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Research links COVID-19 vaccines to temporary facial palsy in over 5,000 patients