Scientists unravel mystery about how nature can access genetic information in cells

Australian scientists have unraveled part of the mystery about how nature can usefully access genetic information in cells despite it being so tightly packed away.

The discovery helps solve what is effectively an 'input/output' problem caused by the need for cells to pack metres of DNA into a space just millionths of a metre across - but at the same time read, copy and repair the information held in the DNA. It also helps provide pathways to understand how defects in this process contribute to disease such as schizophrenia and cancer.

Led by Professor Joel Mackay in the School of Life and Environmental Sciences, the biochemists have revealed that a particular motor protein, CHD4, is used to access genetic information tightly spooled onto what can be imagined as 'genetic cotton reels'.

The research is published today in Nature Communications.

Professor Mackay said:

This protein effectively remodels our DNA to allow access to the information that determines the fate of a cell and its ability to respond to signals from the outside. It is a critical protein for almost all the work that cells do, including cell division and DNA repair."

Understanding this process will be critical in the long term for developing treatments for neurodevelopmental disorders and some cancers.

These illnesses are in part triggered by defects in the remodeling of the DNA that is driven by this process.

The protein CHD4 and its close partners are emerging as important risk factors in polygenic neurodevelopmental disorders, schizophrenia and bipolar disorder, as well as in rare monogenic disorders, such as GAND, which causes severe mental disability."

Professor Joel Mackay, School of Life and Environmental Sciences

He said that mutations in the CHD4 protein that impair its function are also associated with endometrial carcinoma.

Source:
Journal reference:

Zhong, Y., et al. (2020) CHD4 slides nucleosomes by decoupling entry- and exit-side DNA translocation. Nature Communications. doi.org/10.1038/s41467-020-15183-2.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study identifies a potential treatment for Sandhoff and Tay-Sachs diseases