New technique determines lipid composition in a brain region

Researchers at the Beckman Institute at the University of Illinois at Urbana-Champaign have developed a new technique that can determine the specific molecular form, location, and the number of lipids in samples of rat brain tissue. The technique provides more information than previous methods.

The paper "Quantitative Imprint Mass Spectrometry Imaging of Endogenous Ceramides in Rat Brain Tissue with Kinetic Calibration" was published in Analytical Chemistry.

"The brain is like a bar of butter. The most common molecules are water and lipids," said Jonathan Sweedler, James R. Eisner Family Endowed Chair in Chemistry and the director of the School of Chemical Sciences.

"Unfortunately, we don't fully understand the chemical complexity of lipids in the brain, which makes it hard to know their functions and how they are affected by different diseases."

Previous research in the field determined the lipid composition in a brain region, but not the localization or amount. The Sweedler Research Group refined a new technique called mass spectroscopy imaging that measures all three.

The technique allows us to look at a slice of a rat brain and figure out the locations of specific and unusual lipids."

Jonathan Sweedler, Director of the School of Chemical Sciences, Beckman Institute for Advanced Science and Technology

Members of the Sweedler Research Group imprinted the tissues onto slides containing chemicals that could diffuse into the tissues and vice versa.

"It's like taking a piece of paper with ink and putting silly putty on it and seeing the image on the silly putty," Sweedler said.

Using this technique, the researchers were able to determine the distribution and amount of ceramides, which are important in learning and memory, in the tissue samples.

However, there are disadvantages to the technique. "Although it works well for certain categories of lipids, we haven't shown that it works for the molecules found in the brain," Sweedler said.

"Additionally, it requires more steps because you have to prepare the brain sample and the surfaces that have the chemical coating."

The researchers hope that this technique will help them look at how the lipid composition changes in response to pain medicines and drugs of abuse. This may help in the search for alternatives to existing treatments for chronic pain.

Source:
Journal reference:

Wu, Q., et al. (2020) Quantitative Imprint Mass Spectrometry Imaging of Endogenous Ceramides in Rat Brain Tissue with Kinetic Calibration. Analytical Chemistry. doi.org/10.1021/acs.analchem.0c00392.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
CeVD-related brain network phenotype can provide insights into cognitive decline trajectory