FSU researchers develop a new material to make flexible X-ray detectors

Florida State University researchers have developed a new material that could be used to make flexible X-ray detectors that are less harmful to the environment and cost less than existing technologies.

The team led by Biwu Ma, a professor in the Department of Chemistry and Biochemistry, created X-ray scintillators that use an environmentally friendly material. Their research was published in the journal Nature Communications .

Developing low-cost scintillation materials that can be easily manufactured and that perform well remains a great challenge. This work paves the way for exploring new approaches to create these important devices."

Biwu Ma, Professor, Department of Chemistry and Biochemistry, Florida State University

Biwu Ma, professor in the Department of Chemistry and Biochemistry X-ray scintillators convert the radiation of an X-ray into visible light, and they are a common type of X-ray detector. When you visit the dentist or the airport, scintillators are used to take images of your teeth or scan your luggage.

Various materials have been used to make X-ray scintillators, but they can be difficult or expensive to manufacture. Some recent developments use compounds that include lead, but the toxicity of lead could be a concern.

Ma's team found a different solution. They used the compound organic manganese halide to create scintillators that don't use lead or heavy metals. The compound can be used to make a powder that performs very well for imaging and can be combined with a polymer to create a flexible composite that can be used as a scintillator. That flexibility broadens the potential use of this technology.

"Researchers have made scintillators with a variety of compounds, but this technology offers something that combines low cost with high performance and environmentally friendly materials," Ma said. "When you also consider the ability to make flexible scintillators, it's a promising avenue to explore."

Ma recently received a GAP Commercialization Investment Program grant from the FSU Office of the Vice President for Research to develop this technology. The grants help faculty members turn their research into possible commercial products.

Source:
Journal reference:

Xu, L., et al. (2020) Highly efficient eco-friendly X-ray scintillators based on an organic manganese halide. Nature Communications. doi.org/10.1038/s41467-020-18119-y.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Research suggests no need for yellow fever vaccine booster after initial dose