New methods help to accurately identify cancers’ hidden genetic losses, duplications

Understanding the specific mutations that contribute to different forms of cancer is critical to improving diagnosis and treatment. But limitations in DNA sequencing technology make it difficult to detect some major mutations often linked to cancer, such as the loss or duplication of parts of chromosomes.

Now, methods developed by Princeton computer scientists will allow researchers to more accurately identify these mutations in cancerous tissue, yielding a clearer picture of the evolution and spread of tumors than was previously possible.

Losses or duplications in chromosomes are known to occur in most solid tumors, such as ovarian, pancreatic, breast and prostate tumors. As cells grow and divide, slip-ups in the processes of copying and separating DNA can also lead to the deletion or duplication of individual genes on chromosomes, or the duplication of a cell's entire genome -- all 23 pairs of human chromosomes. These changes can activate cancer-promoting genes or inactivate genes that suppress cancerous growth.

"They're important driver events in cancer in their own right, and they interact with other types of mutations in cancer," said Ben Raphael, a professor of computer science who co-authored the studies with Simone Zaccaria, a former postdoctoral research associate at Princeton.

Although medical science has recognized the mutations as critical parts of cancer development, identifying these losses or duplications in chromosomes is difficult with current technology. That is because DNA sequencing technologies cannot read whole chromosomes from end to end. Instead, the technologies allow researchers to sequence snippets of the chromosome, from which they assemble a picture of the entire strand. The weakness of this method is that it cannot easily identify gaps in the DNA strand or areas of duplication.

To address this problem, Raphael and Zaccaria created new mathematical tools that allow scientists to search the vast collection of DNA snippets and uncover whether there are either missing pieces or duplicates. The algorithms, dubbed HATCHet and CHISEL, are described in detail in separate publications on Sept. 2 in Nature Communications and Nature Biotechnology.

"All the cells you are sequencing come from the same evolutionary process, so you can put the sequences together in a way that leverages this shared information," said Zaccaria, who will soon begin positions as a principal research fellow at the University College London Cancer Institute and a visiting research scientist at London's Francis Crick Institute.

The reality is that the technology for sequencing DNA in individual cells has limitations, and algorithms help researchers overcome these limitations. Ideally, both the sequencing technologies and the algorithms will continue to improve in tandem."

Ben Raphael, Professor of Computer Science

Raphael's research group has multiple collaborations with cancer researchers who are beginning to apply the HATCHet and CHISEL algorithms to sequences from various types of patient samples and experimental models.

Source:
Journal reference:

Zaccaria, S & Raphael, B.J. (2020) Characterizing allele- and haplotype-specific copy numbers in single cells with CHISEL. Nature Biotechnology. doi.org/10.1038/s41587-020-0661-6.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Assessing the impact of gozetotide in PSMA-positive prostate cancer