Decreasing activity of ZMPSTE24 protease with age and comorbidities may make elderly COVID-19 patients vulnerable

Endothelial dysfunction is a feature of thrombotic events reported in COVID-19 disease patients. However, the underlying molecular mechanisms of COVID-19-induced endothelial dysfunction are not clear.

Studies have shown that circulating levels of PAI-1, the coagulation cascade activator, are considerably higher in COVID-19 patients with severe respiratory illness compared to patients with bacterial-sepsis and acute respiratory distress syndrome (ARDS). Hence the increase in PAI-1 levels is recognized as an early marker of endothelial dysfunction in COVID-19 patients.

Examining the role played by protein degradation in the induction of PAI-1 by SARS-CoV-2-S1 protein

Researchers from Johns Hopkins University and the University of Science and Technology of China recently reported that recombinant SARS-CoV-2 spike glycoprotein stimulates the PAI-1 production by Human Pulmonary Microvascular Endothelial Cell (HPMEC). Their objective was to examine the role played by protein degradation in the induction of PAI-1 by this SARS-CoV-2-S1. They found that bortezomib, the proteasomal degradation inhibitor, impeded changes in PAI-1 induced by SARS-CoV-2-S1.

The data from the study, reported in the American Journal of Respiratory Cell and Molecular Biology, further showed that bortezomib upregulated KLF2, which is a shear-stress-regulated transcription factor that suppresses the expression of PAI-1.

Study: ZMPSTE24 Regulates SARS-CoV-2 Spike Protein-enhanced Expression of Endothelial Plasminogen Activator Inhibitor-1. Image Credit: American Journal of Respiratory Cell and Molecular Biology
Study: ZMPSTE24 Regulates SARS-CoV-2 Spike Protein-enhanced Expression of Endothelial Plasminogen Activator Inhibitor-1. Image Credit: American Journal of Respiratory Cell and Molecular Biology

Studies have shown that age and comorbidities such as metabolic disorders are major risk factors contributing to morbidity and mortality in COVID-19 patients. Hence, the authors examined the role of a metalloprotease ZMPSTE24 in the induction of PAI-1 in HPMEC by SARS-CoV-2-S1. ZMPSTE24 plays a role in host defense against RNA viruses, and it is decreased in the elderly and patients with metabolic syndrome.

Decrease in ZMPSTE24 make older COVID-19 patients with metabolic comorbidities more vulnerable to vascular endothelial injury

SARS-CoV-2 is believed to enter cells via the angiotensin-converting enzyme 2 (ACE2) receptor in the host cell. Recombinant SARS-CoV-2-S1 highly reduced expression of ACE2 in HeLa cells transfected with ACE2 cDNA. This has also been shown for other coronaviruses, such as SARS-CoV-1, which use the ACE2 receptor to enter the host cell.

Since ACE2 has been shown to protect against acute lung injury in several acute respiratory distress syndromes, its reduction could explain the compromised lung function seen in COVID-19 patients.

ACE2 protects the lungs by degrading angiotensin II (AngII) to angiotensin. AngII drives many adverse effects such as endothelial dysfunction, increased coagulation, inflammation, hypertension, oxidative stress, fibrosis, lung injury, and pulmonary hypertension.

Downregulation of ACE2 by the SARS-CoV-2-S1 protein offers evidence that this protein causes endothelial injury in the lungs of COVID-19 patients.

“The reduction in ACE2 could explain the compromised lung function of COVID-19 patients, as ACE2 has been reported to protect against acute lung injury in several models of acute respiratory distress syndrome.”

The findings of this study revealed that overexpression of ZMPSTE24 inhibited the PAI-1 production in spike protein-exposed HPMEC. They also found that membrane expression of the host receptor ACE2 was reduced by ZMPSTE24-mediated incision and shedding of the ACE2 ectodomain. This leads to the accumulation of ACE2 decoy fragments that may bind to the virus.

Overall, the data from this study indicate that decline in ZMPSTE24 with age and metabolic comorbidities may make COVID-19 patients more vulnerable to vascular endothelial injury by SARS-CoV-2 viruses. Also, the enhanced production of endothelial PAI-1 may have a role in prothrombotic events in patients with COVID-19.

Bortezomib may be repurposed to treat complications from endothelial dysfunction in COVID-19 patients

These findings offer new insights into the mechanisms of SARS-CoV-2 infection in the lung tissue. The pathogenesis of severe lung injury and respiratory dysfunction in COVID-19 patients shows a quantifiable means for assessing vulnerability to severe disease in key target populations.

The results also imply that bortezomib, currently used in multiple myeloma treatment, may be repurposed to treat complications from endothelial dysfunction and intravascular coagulation and speed up recovery from SARS-CoV-2 and other similar infections.

Studies have also shown that pharmacological inhibitors of PAI-1, including PAI-039 and MDI-2268, can inhibit atherosclerosis in mice with metabolic syndrome and obesity. More studies are needed in the future to determine if PAI-1 inhibitors can help treat thromboembolism and mortality in patients with COVID-19.

“The pathogenesis of severe acute lung injury and respiratory failure with COVID-19 suggests a quantifiable means for assaying vulnerability to these severe manifestations in key target subpopulations.”

Journal reference:
Susha Cheriyedath

Written by

Susha Cheriyedath

Susha is a scientific communication professional holding a Master's degree in Biochemistry, with expertise in Microbiology, Physiology, Biotechnology, and Nutrition. After a two-year tenure as a lecturer from 2000 to 2002, where she mentored undergraduates studying Biochemistry, she transitioned into editorial roles within scientific publishing. She has accumulated nearly two decades of experience in medical communication, assuming diverse roles in research, writing, editing, and editorial management.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Cheriyedath, Susha. (2021, May 23). Decreasing activity of ZMPSTE24 protease with age and comorbidities may make elderly COVID-19 patients vulnerable. News-Medical. Retrieved on November 22, 2024 from https://www.news-medical.net/news/20210523/Decreasing-activity-of-ZMPSTE24-protease-with-age-and-comorbidities-may-make-elderly-COVID-19-patients-vulnerable.aspx.

  • MLA

    Cheriyedath, Susha. "Decreasing activity of ZMPSTE24 protease with age and comorbidities may make elderly COVID-19 patients vulnerable". News-Medical. 22 November 2024. <https://www.news-medical.net/news/20210523/Decreasing-activity-of-ZMPSTE24-protease-with-age-and-comorbidities-may-make-elderly-COVID-19-patients-vulnerable.aspx>.

  • Chicago

    Cheriyedath, Susha. "Decreasing activity of ZMPSTE24 protease with age and comorbidities may make elderly COVID-19 patients vulnerable". News-Medical. https://www.news-medical.net/news/20210523/Decreasing-activity-of-ZMPSTE24-protease-with-age-and-comorbidities-may-make-elderly-COVID-19-patients-vulnerable.aspx. (accessed November 22, 2024).

  • Harvard

    Cheriyedath, Susha. 2021. Decreasing activity of ZMPSTE24 protease with age and comorbidities may make elderly COVID-19 patients vulnerable. News-Medical, viewed 22 November 2024, https://www.news-medical.net/news/20210523/Decreasing-activity-of-ZMPSTE24-protease-with-age-and-comorbidities-may-make-elderly-COVID-19-patients-vulnerable.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Mucosal COVID-19 boosters outperform mRNA shots in preventing upper airway infections