Simple and rapid method measures T-cell immune response to SARS-CoV-2 virus

Researchers from Duke-NUS Medical School, together with collaborators from the National Centre for Infectious Diseases (NCID) and Singapore General Hospital (SGH), have discovered a simple and rapid method to measure the T-cell immune response to the SARS-CoV-2 virus, which causes COVID-19.

A growing body of data now demonstrates the importance of both T cells and antibodies in the coordinated immune response against SARS-CoV-2. This method is a further boost to scientists who seek to routinely monitor and assess SARS-CoV-2-specific T-cell responses in vaccinated or convalescent individuals, as well as to test and verify the effectiveness of vaccines.

T cells play a vital role alongside antibodies in protecting people against COVID-19, but they are much harder to detect and measure. Our research offers a feasible approach that can overcome the current limitations faced in detecting spike-specific T-cell responses, and will help better evaluate the protective role played by T cells in our immune system."

Dr Anthony Tanoto Tan, Study First Author and Study Senior Research Fellow, Emerging Infectious Diseases Program, Duke-NUS Medical School

For the study, published in the Journal of Clinical Investigation, scientists took blood samples from volunteers who were vaccinated against COVID-19, or who had been infected and then recovered from the disease. They then introduced small fragments of the SARS-CoV-2 spike protein directly into the blood samples. In response to these fragments, the T cells released chemical signals called cytokines, which are much easier to detect and measure than T cells, and are already being tracked to monitor T-cell activity for the diagnosis of diseases such as tuberculosis.

Building on that, the team showed that the test, called Cytokine Release Assay (CRA), can reliably identify and quantify specific T cells present in the blood of people who have been vaccinated against COVID-19, or have recovered from SARS-CoV-2 infection. Working with different blood samples from more than 200 people, the researchers desmonstrated that the CRA test was as sensitive as existing methods used to find and measure T-cell activity.

"This discovery allows a rapid and large-scale expansion of studies to track T-cell activity across the world, while not requiring specialised or expensive equipment," said Professor Antonio Bertoletti from Duke-NUS' EID programme, the study's corresponding author. "The study results confirm that the level of antibodies against SARS-CoV-2 in blood samples does not always correlate with the T-cell response. With this rapid test, we can help define the correlates of protection from T cells and antibodies for the development of COVID-19 vaccines."

Professor Patrick Casey, Senior Vice-Dean for Research at Duke-NUS, said, "This important study advances our understanding of the human body's immune response at a critical juncture in this pandemic. As validated in this research, repurposing the well-established CRA test to fast-track the evaluation of T-cell responses in COVID-inoculated or -convalescent patients adds a new dimension to vaccine strategies as we battle the threat of new and emergent variants."

To bring this discovery to market, Duke-NUS has licensed the assay to Hyris, an innovation-based biotechnology company, which will leverage its Hyris SystemTM to further develop this rapid SARS-CoV-2 T-cell test for clinical use globally.

Source:
Journal reference:

Tan, A. T., et al. (2021) Rapid measurement of SARS-CoV-2 spike T cells in whole blood from vaccinated and naturally infected individuals. The Journal of Clinical Investigation. doi.org/10.1172/JCI152379.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Barcoding small extracellular vesicles with new CRISPR-based system