New strategies for dealing with future pandemics

Non-pharmaceutical interventions (NPIs) such as lockdowns, social distancing restrictions, and mandatory face masks remain some of the most disliked responses to the pandemic. While many acknowledge their necessity, the toll that these measures have taken on businesses, livelihoods, and mental health has been exhausting for many.

These strict restrictions have also given rise to a vast array of new conspiracy theories, some of which have decried these NPIs as an attempt to remove rights. In a recent study published on the preprint server medRxiv*, researchers from the University of Vermont explore strategies for managing pandemics as well as model potentially optimal solutions.

Study: Should we Mitigate or Suppress the next Pandemic? Time-Horizons and Costs shape optimal Social Distancing Strategies. Image Credit: Khakimullin Aleksandr / Shutterstock.com

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

About the study

The researchers used a variational analysis approach that allowed them to derive functions that minimize or maximize a quantity over an interval in order to combine susceptible-infected-recovered (SIR) epidemic models that describe disease transmission with a function for both infection and social distancing costs over time. SIR models can determine future evolution quite accurately, as long as the parameters that enter the model do not change.

Unfortunately, with early pandemic responses fragmented and oft-changing, many early SIR models did not accurately reflect reality. However, using variational principles, model parameters can change to reach a pre-specified end state and time by selecting a trajectory that minimizes infection and social distancing costs, thus changing the SIR model to a fixed time horizon model.

The state variables typically used in SIR models are population densities of susceptible, infected, and recovered populations, with a constant disease progression rate from infected to recovered and a per capita disease transmission rates. The transmission rate divided by the per capita progression rate from infected to recovered reveals the R0, otherwise known as the basic reproduction number.

In this model, the transmission rate and reproduction number change over time, thus representing changes in social distancing policies and behaviors. This new number is the RD, and the Rt is the effective reproduction number that considers both the removal of susceptible individuals and changes in social distancing.

A third parameter, c, describes costs of social distancing compared to infection, and the last parameter, Tfinal, describes the time at which the pandemic as predicted to end. Other important values are S∞, which is defined as the proportion of individuals who would remain susceptible following the end of the pandemic, and sH, which is the maximum proportion of individuals who could be susceptible in a population that has achieved herd immunity.

The researchers divided strategies for dealing with the pandemic into two basic archetypes: suppression and mitigation. In a mitigating strategy, infection peaks before subsiding, and a substantial portion of the population becomes infected. This strategy aims to reduce the cost of social distancing.

Comparatively, the suppression strategy aims to prevent as many cases as possible, with a lower final proportion of infected individuals but enough recovered individuals to provide herd immunity. Optimal suppression strategies will not hold Rt lower than 1 indefinitely and optimal mitigation strategies will not allow completely uncontrolled pandemics.

Study findings

One of the most important findings was that the perceived time-horizon and costs of social distancing can quickly lead to a switch from suppression to a mitigation strategy. In general, the higher the cost of social distancing and the longer the disease continues, the higher the chance that society will prioritize a mitigation strategy, and this switch can occur very rapidly.

Any pandemic close to the border of the mitigation/suppression threshold will likely provoke argument and disagreement. The researchers point out that their strategies took place in an idealized setting, in which there were no rapid changes in strategy or flip-flopping on policies.

The authors offer the tongue-in-cheek suggestion that these may have been better solutions than what they have proposed before suggesting that the strategies proposed have not been tried. They also identified poor communication and misinformation as some of the key reasons society fails to deliver these strategies, as well as uncertainty, complexity, and heterogeneity as pitfalls that could prevent society from delivering them in the future.

Conclusions

The methods explored here could help inform NPIs such as social distancing, mandatory face mask-wearing, and the closing of public places, both for the remainder of this pandemic and for the future. While the ‘mitigation strategy’ may seem callous to some, loss of livelihoods could lead to as many deaths as a disease in certain scenarios, and the mathematics explored here could help ensure the best possible interventions remain in place. Discomforting as this decision must be, hopefully, this research can help inform public health policymakers in the future.

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

Journal references:

Article Revisions

  • Apr 29 2023 - The preprint preliminary research paper that this article was based upon was accepted for publication in a peer-reviewed Scientific Journal. This article was edited accordingly to include a link to the final peer-reviewed paper, now shown in the sources section.
Sam Hancock

Written by

Sam Hancock

Sam completed his MSci in Genetics at the University of Nottingham in 2019, fuelled initially by an interest in genetic ageing. As part of his degree, he also investigated the role of rnh genes in originless replication in archaea.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Hancock, Sam. (2023, April 29). New strategies for dealing with future pandemics. News-Medical. Retrieved on November 22, 2024 from https://www.news-medical.net/news/20211118/New-strategies-for-dealing-with-future-pandemics.aspx.

  • MLA

    Hancock, Sam. "New strategies for dealing with future pandemics". News-Medical. 22 November 2024. <https://www.news-medical.net/news/20211118/New-strategies-for-dealing-with-future-pandemics.aspx>.

  • Chicago

    Hancock, Sam. "New strategies for dealing with future pandemics". News-Medical. https://www.news-medical.net/news/20211118/New-strategies-for-dealing-with-future-pandemics.aspx. (accessed November 22, 2024).

  • Harvard

    Hancock, Sam. 2023. New strategies for dealing with future pandemics. News-Medical, viewed 22 November 2024, https://www.news-medical.net/news/20211118/New-strategies-for-dealing-with-future-pandemics.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
As California taps pandemic stockpile for bird flu, officials keep close eye on spending