Cedars-Sinai scientists identify potential new therapy for COVID-19

Investigators at Cedars-Sinai have identified a potential new therapy for COVID-19: a biologic substance created by reengineered human skin cells.

Scientists found the substance stopped SARS-CoV-2, the virus that causes COVID-19, from reproducing itself and also protected infected cells when tested in human lung cells. Although still in the early stages, the findings open the possibility of having a new therapy for COVID-19 patients. The details of the potential therapy are published in the journal Biomaterials and Biosystems.

We were surprised to find this potential therapy shuts down a novel pathway for viral replication and also protects infected cells."

Ahmed G. Ibrahim, PhD, MPH, assistant professor, Smidt Heart Institute at Cedars-Sinai and first author of the study

Few treatments currently exist for COVID-19 and the ones that do primarily focus solely on preventing the virus from replicating. This new potential treatment inhibits replication but also protects or repairs tissue, which is important because COVID-19 can cause symptoms that affect patients long after the viral infection has been cleared.

The potential therapy investigated in this study was created by scientists using skin cells called dermal fibroblasts. The investigators engineered the cells to produce therapeutic extracellular vesicles (EVs), which are nanoparticles that serve as a communication system between cells and tissue. Engineering these fibroblasts allowed them to secrete EVs-;which the investigators dubbed "ASTEX"-;with the ability to repair tissue.

In previous experiments, the investigators demonstrated that ASTEX can repair heart tissue, lung tissue and muscle damage in laboratory mice. When the COVID-19 pandemic hit in 2020, the investigators turned to studying whether ASTEX could be used as treatment against SARS-CoV-2.

The study was done through a collaboration with investigators at UCLA who tested ASTEX by applying it to human lung epithelial cells, cells that line the pulmonary tract and are the targets of SARS-CoV-2 infection.

They discovered that ASTEX prevented cells from launching an inflammatory process that could lead to cell death. Cells treated with ASTEX also made fewer of a type of protein called ACE that SARS-CoV-2 may use to infect cells.

The team then compared the potential treatment with remdesivir, a drug currently used to treat COVID-19, and found that remdesivir did not inhibit production of ACE. Instead, remdesivir stops the virus from latching on to a protein called ACE2. ASTEX, therefore, may present another way to prevent the virus from entering cells.

"Viruses don't have their own machinery to get into cells, so they use proteins," Ibrahim said. "We believe targeting ACE proteins is just one way SARS-CoV-2 infiltrates cells, hijacks their genetic information and replicates itself in the body."

ASTEX appears to have stopped this hijacking process.

"This potential anti-COVID-19 biological therapy is novel in that it has two facets: It protects infected cells, which remdesivir does not do, and also inhibits viral replication," said senior author Eduardo Marbán, MD, PhD, executive director of the Smidt Heart Institute and the Mark S. Siegel Family Foundation Distinguished Professor at Cedars-Sinai.

Investigators are planning future studies.

Source:
Journal reference:

Ibrahim, A.G., et al. (2022) Engineered extracellular vesicles antagonize SARS-CoV-2 infection by inhibiting mTOR signaling. Biomaterials and Biosystems. doi.org/10.1016/j.bbiosy.2022.100042.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
COVID-19 mRNA vaccine linked to myocardial scarring in adolescents and young adults