Monoclonal antibodies (mAbs) against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been used as therapeutic agents for the treatment of coronavirus disease 2019 (COVID-19). Though these therapeutic mAbs have benefited hospitalized COVID-19 patients, nothing is known about their therapeutic efficiency against novel SARS-CoV-2 variants.
This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources
A new study evaluates the sensitivity of the new Omicron subvariants (BA.2.11, BA.2.12.1, and BA.4/5) to eight therapeutic mAbs. A preprint version of the study is available on the bioRxiv* server while the article undergoes peer review.
Omicron subvariants
The Omicron variant of SARS-CoV-2 (BA.2) was identified in November 2021. It has been the dominant variant all over the world since May 2022. Since then, several Omicron subvariants have emerged in different countries. These subvariants have replaced the Omicron BA.2 variants in these countries. Omicron BA.2.11 subvariant is becoming dominant in France. Omicron BA.2.12.1 subvariant is becoming dominant in the U.S. Omicron BA.4/5 subvariants are becoming dominant in South Africa.
The new SARS-CoV-2 variants have to be monitored and evaluated for their transmissibility, pathogenicity, and resistance to immune responses. The emerging SARS-CoV-2 variants harbor mutations in the spike (S) protein. These mutations confer resistance to the variants against vaccines and therapeutic antibodies. BA.2.11 subvariant has the L452R mutation; BA.2.12.1 has the L452Q and S704L mutations; and BA.4/5 has L452R, HV69-70del, 45 F486V, and R493Q mutations. The L452R and L452Q mutations were also detected in Delta and Lambda variants, and these mutations affected the sensitivity of the virus to vaccine-induced neutralizing antibodies. Therefore, it is possible that the new Omicron subvariants also have reduced sensitivity towards therapeutic mAbs.
Therapeutic mAbs
The first therapeutic mAb was approved by the U. S. Food and Drug Administration (FDA) in 1986. Therapeutic mAbs are highly specific and therefore have fewer side effects. Therapeutic mAbs are used for treating several diseases, including cancers, autoimmune, metabolic, and infectious diseases.
Anti-SARS-CoV-2 mAbs bind the virus inhibiting its entry into cells. These mAbs target the viral S protein. They have demonstrated clinical benefits in treating COVID-19.
Currently, five anti-SARS-CoV-2 mAb products have received emergency use authorization (EUA) from FDA. These include bamlanivimab plus etesevimab, bebtelovimab, casirivimab plus imdevimab, sotrovimab, and tixagevimab plus cilgavimab.
The COVID-19 Treatment Guidelines for using anti-SARS-CoV-2 mAbs are based on current knowledge of the in vitro neutralizing activities of the mAbs against the circulating SARS-CoV-2 variants and subvariants. The mAb choice depends on the prevalent variant and its sensitivity to the mAb. These mAbs are recommended for the treatment of nonhospitalized patients with mild to moderate symptoms and who have high chances of hospitalization and progressing to severe disease.
Sensitivity of Omicron subvariants to mAbs
This study tested the possibility of reduced sensitivity of Omicron subvariants by generating pseudoviruses carrying the S proteins of Omicron subvariants BA.2.11, BA.2.12.1, and BA.4/5. The sensitivity of these pseudoviruses was tested against eight mAbs - bamlanivimab, bebtelovimab, casirivimab, cilgavimab, etesevimab, imdevimab, sotrovimab, and tixagevimab. The neutralizing potential of the mAbs against the pseudoviruses containing S proteins of the Omicron subvariants was assayed.
BA.2 was not neutralized by bamlanivimab, casirivimab, etesevimab, imdevimab, and tixagevimab. These five mAbs also failed to neutralize the new Omicron subvariants. However, pseudoviruses with BA.2 S protein with R493Q mutation were partially sensitive to casirivimab and tixagevimab. The mAb bebtelovimab was around 2 times more effective against BA.2 and all Omicron subvariants tested when compared to the wild-type strain. The mAb sotrovimab was around 20 times less effective against BA.2 compared to the wild-type strain.
The Omicron subvariants containing the L452R mutation, including BA.2.11 and BA.4/5, were more sensitive to sotrovimab than BA.2. The mAb cilgavimab was effective against BA.2. However, the pseudoviruses containing the L452R/Q mutations were around 2 to 5 times resistant to this antibody. BA.4/5 was around 30 times more resistant to cilgavimab compared to BA.2.
Conclusion
The newly emergent SARS-CoV-2 variants show varying sensitivity to the mAbs tested compared to the wild-type strain.
The newly emerging SARS-CoV-2 variants accumulate mutations in the S proteins, the target of therapeutic mAbs. This study emphasizes the importance of rapidly evaluating the efficiency of therapeutic mAbs against novel SARS-CoV-2 variants.
This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources
Journal references:
- Preliminary scientific report.
Yamasoba, D. et al. (2022) "Sensitivity of novel SARS-CoV-2 Omicron subvariants, BA.2.11, BA.2.12.1, BA.4 and BA.5 to therapeutic monoclonal antibodies". bioRxiv. doi: 10.1101/2022.05.03.490409. https://www.biorxiv.org/content/10.1101/2022.05.03.490409v1
- Peer reviewed and published scientific report.
Yamasoba, Daichi, Yusuke Kosugi, Izumi Kimura, Shigeru Fujita, Keiya Uriu, Jumpei Ito, and Kei Sato. 2022. “Neutralisation Sensitivity of SARS-CoV-2 Omicron Subvariants to Therapeutic Monoclonal Antibodies.” The Lancet Infectious Diseases 22 (7): 942–43. https://doi.org/10.1016/s1473-3099(22)00365-6. https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(22)00365-6/fulltext.
Article Revisions
- May 13 2023 - The preprint preliminary research paper that this article was based upon was accepted for publication in a peer-reviewed Scientific Journal. This article was edited accordingly to include a link to the final peer-reviewed paper, now shown in the sources section.