Study explores if prior infection with SARS-CoV-2 increased sensitivity to a mitochondrial toxin known to induce parkinsonism

Post-viral infection sequelae have included neurological syndromes. Among these is the association of parkinsonian manifestations with a prior history of viral infection, as far back as the Spanish flu pandemic of 1918, when encephalitis lethargica was recognized as a long-term complication of the flu. A new paper examines the possibility of similar syndromes following coronavirus disease 2019 (COVID-19).

Study: COVID-19 infection enhances susceptibility to oxidative-stress induced parkinsonism. Image Credit: Dotted Yeti/Shutterstock
Study: COVID-19 infection enhances susceptibility to oxidative-stress induced parkinsonism. Image Credit: Dotted Yeti/Shutterstock

Introduction

Viral infections sometimes affect non-target organs, including the brain, to cause neurological symptoms. With encephalitis lethargica, the mechanism was an imputed affinity of the virus for catecholamine-secreting neurons in the midbrain, specifically in the substantia nigra and locus ceruleus, two areas characteristically affected in Parkinson’s disease (PD). Inflammatory lesions or glial activation in the brain could also contribute to or account for the damage.

The ongoing COVID-19 pandemic was caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has caused over 500 million cases globally. Though it causes mostly respiratory symptoms, other organs are also affected, directly or indirectly, as a result of the cytokine storm induced by the dysregulation of the immune-inflammatory response.

The authors of the current study, to be published online in the journal Movement Disorders, looked at the potential for an increased risk of parkinsonism following a bout of SARS-CoV-2 infection through accepted post-viral mechanisms. They used a mouse model that expressed the human angiotensin-converting enzyme 2 (hACE2) to study the neurological effects of the infection.

The animals were first infected with the virus at increasing titers. While the lower doses did not cause morbidity or mortality, the medium and higher doses were associated with symptoms and/or mortality in ~30% and 67% of cases.

The animals that died or were euthanized (when they lost 20% or more of their weight) appeared severely ill, but survivors remained euthermic and had normal blood oxygen levels. At 38 days after recovery, they were then inoculated to a mitochondrial poison, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), at subthreshold levels for toxicity. The aim was to induce some of the hallmark features of PD by the resulting low inflammation.

What did the study show?

The findings revealed that the recovered animals exposed to MPTP developed features of PD more readily compared to either the mice that were infected and recovered or were exposed to the chemical alone. No dopaminergic neuron loss was observed in any group other than the infection+MPTP group, which showed from a fifth to a quarter more damage than either the infection or the toxin alone.

When the striatal dopaminergic terminals alone were assessed, the differences were significant, with more than half being lost after MPTP use alone or associated with the infection, compared to the vehicle alone. In other words, despite the lower extent of dopaminergic neuron loss, the striatal terminal loss was comparable in both groups, indicating the greater sensitivity of the latter to oxidative stress induced by mitochondrial damage.

Microglial density was assessed in the resting and activated state in the dorsolateral striatum region in these groups. This showed marked differences between groups in the individual proportions of resting vs. activated microglia, though not the total number. That is, in the infection-MPTP group, resting microglia were reduced by over a third compared to any other. Active microglia were, meanwhile, increased by 300% in this group.

The density of activated microglia increased by ~110% and 180% in both MPTP groups, the former MPTP alone vs. vehicle alone and the latter infection-MPTP vs. infection alone.

What are the implications?

This study suggests the need to understand the risk of post-COVID-19 PD among the long-haulers and patients with long-term post-acute COVID-19 sequelae. In this study, it was clear that the infection alone did not cause either brain inflammation or death of dopaminergic neurons, ruling out direct viral toxicity as a cause of the PD. However, these neurons were sensitized by the infection to the injurious effects of mitochondrial stress, induced by a toxin at a level that is inadequate by itself to cause neuron loss.

This resembles the earlier reports of neurological sequelae to the flu pandemic. One study showed that humans who recovered from the Spanish flu were at a 73% higher risk of PD. In previous studies, the dose of MPTP was double that required to produce a dopaminergic loss in the present study. “This suggests that although different viruses can sensitize the brain to later insults, the dose of SARS-CoV-2 virus used here is a stronger sensitizing agent that the CA/09 H1N1 influenza virus.”

The mechanism appears to be via the cytokine storm induced by the presence of the virus, which leads to systemic inflammation. Thus, a transient increase in parkinsonian symptoms may be expected, but keeping in mind the increased sensitivity of these neurons to injury following SARS-CoV-2 infection vs. the flu.

During this upheaval, peripheral cytokines and chemokines may travel to the brain and cross the blood-brain barrier through the capillary beds while also influencing brain activity through the glymphatics of the brain. Inflammatory chemicals like these activate the innate immune system, viz, the astrocytes and microglia of the brain parenchyma. The result is further secretion of inflammatory proteins, creating a milieu in which the neurons are highly susceptible to further injury.

The highest microglial density compared to the neuronal density is in the striatal nucleus, the target of neurodegeneration in PD. This makes it especially vulnerable to oxidative damage from reactive oxygen radicals and mitochondrial injury. While the effects may be gradual rather than acute, the outcome is a persistent susceptibility to further injury that predisposes the cells to apoptosis or death following any kind of environmental or genetic insult.

Further research is necessary to understand the effects of the “second hit,” using other agents that act on other parts of the mitochondria. Again, the impact of COVID-19 vaccination or treatment on future neurological sequelae remains to be identified because the flu shots and the flu drug oseltamivir were both associated with eliminating the sensitizing effect of the second hit with MPTP.

Meanwhile, say the scientists, “for the more than 100 million people worldwide who survived COVID-19, without the benefit of access to vaccinations, the long-term consequences of infection, including increasing the risk for developing Parkinson’s disease, need to be understood. It is also critical for our healthcare providers and governmental agencies to prepare for this potential.”           

Journal reference:
Dr. Liji Thomas

Written by

Dr. Liji Thomas

Dr. Liji Thomas is an OB-GYN, who graduated from the Government Medical College, University of Calicut, Kerala, in 2001. Liji practiced as a full-time consultant in obstetrics/gynecology in a private hospital for a few years following her graduation. She has counseled hundreds of patients facing issues from pregnancy-related problems and infertility, and has been in charge of over 2,000 deliveries, striving always to achieve a normal delivery rather than operative.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Thomas, Liji. (2023, April 08). Study explores if prior infection with SARS-CoV-2 increased sensitivity to a mitochondrial toxin known to induce parkinsonism. News-Medical. Retrieved on December 25, 2024 from https://www.news-medical.net/news/20220520/Study-explores-if-prior-infection-with-SARS-CoV-2-increased-sensitivity-to-a-mitochondrial-toxin-known-to-induce-parkinsonism.aspx.

  • MLA

    Thomas, Liji. "Study explores if prior infection with SARS-CoV-2 increased sensitivity to a mitochondrial toxin known to induce parkinsonism". News-Medical. 25 December 2024. <https://www.news-medical.net/news/20220520/Study-explores-if-prior-infection-with-SARS-CoV-2-increased-sensitivity-to-a-mitochondrial-toxin-known-to-induce-parkinsonism.aspx>.

  • Chicago

    Thomas, Liji. "Study explores if prior infection with SARS-CoV-2 increased sensitivity to a mitochondrial toxin known to induce parkinsonism". News-Medical. https://www.news-medical.net/news/20220520/Study-explores-if-prior-infection-with-SARS-CoV-2-increased-sensitivity-to-a-mitochondrial-toxin-known-to-induce-parkinsonism.aspx. (accessed December 25, 2024).

  • Harvard

    Thomas, Liji. 2023. Study explores if prior infection with SARS-CoV-2 increased sensitivity to a mitochondrial toxin known to induce parkinsonism. News-Medical, viewed 25 December 2024, https://www.news-medical.net/news/20220520/Study-explores-if-prior-infection-with-SARS-CoV-2-increased-sensitivity-to-a-mitochondrial-toxin-known-to-induce-parkinsonism.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
One in four healthy young Marines report long-term physical, cognitive, or psychiatric effects after mild COVID-19