Common germline variants of APOE contribute to differential COVID-19 outcomes

In a recent study published in Nature, researchers investigated the relationship between apolipoprotein E (APOE4) genotype and coronavirus disease 2019 (COVID-19) outcomes using genetic models of mice.

Study: Common human genetic variants of APOE impact murine COVID-19 mortality. Image Credit: MiniStocker/Shutterstock
Study: Common human genetic variants of APOE impact murine COVID-19 mortality. Image Credit: MiniStocker/Shutterstock

Background

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection shows pronounced variation, ranging from asymptomatic infection to lethal disease. Moreover, multiple epidemiological studies have correlated male gender, old age, some comorbidities, and genetic makeup with adverse COVID-19 outcomes. Yet, there is a knowledge gap as to why there are wide variations in clinical outcomes of COVID-19 in humans. Hence, there is a crucial need to identify the factors underlying susceptibility to poor COVID-19 outcomes.

After concerted efforts, scientists found a significant correlation between germline genetics and COVID-19 severity. Subsequently, candidate gene approaches and genome-wide association (GWA) studies identified several genomic loci associated with severe COVID-19. However, the mechanism governing their effects remains unknown.

APOE modulates both innate and adaptive immunity in the context of pathogenic infections and cancers. It also plays a crucial role in lipid metabolism. Nearly 40% of the global population carries either APOE2 or APOE4 allele, while only 3% are homozygous for two other highly prevalent variants of APOE termed APOE2 or APOE4. It prompted the researchers to investigate the role of APOE allelic variants in causally modulating the outcomes of COVID-19, including susceptibility to death.

About the study

The present study used APOE knock-in mice with human APOE germline variations to determine whether APOE causally modulated SARS-CoV-2 infection in vivo. In addition, they gathered clinical association data via human studies to reinstate their findings in mice. They infected 328 APOE knock-in mice, having the murine APOE gene replaced with any of the human APOE genes, with a mouse-adapted (MA) 10 strain of SARS-CoV-2. Further, the researchers performed quantitative real-time polymerase chain reaction (PCR) on the lungs of APOE knock-in mice on day four post-infection (pi).

Furthermore, the researchers performed transcriptional profiling of homogenized lungs of non-infected APOE knock-in mice on days two and four pi. They also employed weighted gene co-expression network analysis (WGCNA) to identify clusters of closely correlated genes and compare their expression to genotype and timepoint relative to SARS-CoV-2 MA10 infection. Lastly, the team performed single-cell ribonucleic acid sequencing (scRNAseq) on 41,500 cells from 29 mice across all three genotypes with and without COVID-19.

Study findings

Among age-matched male and female mice, female mice showed higher survival overall. 100% of APOE4 mice died from COVID-19 relative to ~30% mortality in APOE3 mice, with a more severe impact in male mice. Expectedly, APOE2 and APOE4 mice showed elevated viral loads relative to APOE3 mice. APOE4 mice suffered more pronounced lung injuries, as observed in histopathological analyses on day four pi. Modules that exhibited downregulation in APOE2 and APOE4 mice relative to APOE3 on day four pi showed enrichment of genes implicated in T and B cell activation and positive immune response regulation.

Flow cytometry (FC) on dissociated lungs on day four pi further confirmed an expansion of myeloid cells and relative depletion of lymphoid cells in the lungs of APOE2 and APOE4 relative to APOE3 mice, indicating that the adaptive immune responses were blunted in APOE2 and APOE4 mice during early COVID-19 progression. Consistent with FC data, scRNAseq revealed expansion of myeloid cells in infected mice, which was more prominent in APOE2 and APOE4 relative to APOE3 mice.

Previous GWA studies could not spot an association between severe COVID-19 and APOE variations with any statistical significance. However, the researchers of the present study performed candidate gene analysis concomitantly with reverse genetic approaches to uncover two mechanisms underlying APOE-genotype-dependent variations in COVID-19 outcomes observed in mice. These findings also suggested a potential causal relationship between APOE4 genotypic variations and COVID-19 outcomes in humans.

During early SARS-CoV-2 infection, APOE2 and APOE4 mice showed impaired immune responses. However, during the later stages of COVID-19, APOE4 mice showed a divergent T cell antiviral response with increased expansion of SARS-CoV-2-specific CD8+ T cells. Relative to APOE3 and APOE4 mice, APOE2 mice had hyperactivated proinflammatory signaling, observed in single-cell transcriptional profiling.

Another mechanism noted by the researchers was that only recombinant APOE3 inhibited SARS-CoV-2 infection in vitro. A previous study similarly observed increased SARS-CoV-2 infection in APOE4 mice relative to neurons and astrocytes of APOE3 mice. However, the current study data interpreted it as the APOE3 allele repressing SARS-CoV-2 infection more than APOE2 and APOE4.

Conclusions

The study results have major clinical implications. Prospective clinical studies should determine whether APOE genotyping could be used for risk stratification in SARS-CoV-2 so that patients might benefit from early booster vaccinations, antiviral drugs, and monoclonal antibody therapies. Since common genetic variations, as with APOE genes, were shown to give rise to heterogeneous COVID-19 outcomes; therefore, it will be crucial to assess vaccination efficacy in individuals of distinct APOE genotypes.

APOE2 and APOE4 confer beneficial or detrimental outcomes in COVID-19, depending on the phenotype. Likewise, the APOE4 allele is the strongest monogenetic risk factor for Alzheimer’s disease. Further investigating these aspects could help researchers understand the neurocognitive changes imparted by COVID-19 and Alzheimer's. In other words, studies should further dissect how APOE variants have detrimental effects on COVID-19 outcomes at a molecular level.

Journal reference:
Neha Mathur

Written by

Neha Mathur

Neha is a digital marketing professional based in Gurugram, India. She has a Master’s degree from the University of Rajasthan with a specialization in Biotechnology in 2008. She has experience in pre-clinical research as part of her research project in The Department of Toxicology at the prestigious Central Drug Research Institute (CDRI), Lucknow, India. She also holds a certification in C++ programming.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Mathur, Neha. (2022, September 26). Common germline variants of APOE contribute to differential COVID-19 outcomes. News-Medical. Retrieved on December 21, 2024 from https://www.news-medical.net/news/20220926/Common-germline-variants-of-APOE-contribute-to-differential-COVID-19-outcomes.aspx.

  • MLA

    Mathur, Neha. "Common germline variants of APOE contribute to differential COVID-19 outcomes". News-Medical. 21 December 2024. <https://www.news-medical.net/news/20220926/Common-germline-variants-of-APOE-contribute-to-differential-COVID-19-outcomes.aspx>.

  • Chicago

    Mathur, Neha. "Common germline variants of APOE contribute to differential COVID-19 outcomes". News-Medical. https://www.news-medical.net/news/20220926/Common-germline-variants-of-APOE-contribute-to-differential-COVID-19-outcomes.aspx. (accessed December 21, 2024).

  • Harvard

    Mathur, Neha. 2022. Common germline variants of APOE contribute to differential COVID-19 outcomes. News-Medical, viewed 21 December 2024, https://www.news-medical.net/news/20220926/Common-germline-variants-of-APOE-contribute-to-differential-COVID-19-outcomes.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
SARS-CoV-2 spike protein found lingering in brain regions