Yeast reveals a key mechanism in how genes are controlled

Yeast, that simple organism essential to making beer and bread, has revealed for Cornell University researchers a key mechanism in how genes are controlled.

Gene transcription – the elaborate process that our cells use to read genetic information stored in DNA – was long thought to be turned on only when certain regulatory factors traveled to specific DNA sequences. In new research, a team of Cornell scientists discovered that certain genes have their transcription regulatory factors and cofactors already in place, but in a latent state. With the appropriate signals, these "poised" genes become highly active.

Using CRISPR techniques, the researchers removed parts of the yeast transcription machinery to systematically examine the role they play in regulating genes. Yeast and humans have mostly the same molecular machinery to regulate their genes, so yeast provides an excellent model for understanding gene regulation in humans.

It's like the game of Jenga, where you remove a wood block from a tower of blocks and see if the whole thing crashes down. That's how we learn how protein machines work inside cells."

B. Franklin Pugh, Professor of Molecular Biology and Genetics, Corresponding Author

"The value of being poised is that certain genes, like environmental response genes, can rapidly respond to a changing environment; for example, when yeast encounters and metabolizes bread sugars, causing the bread dough to rise," Pugh said.

"Building upon years of existing research and combining them with modern and elegant genomics tools helped us in filling gaps in the current knowledge as well as in making new discoveries," said Chitvan Mittal, first author and research associate at the Baker Institute for Animal Health in the College of Veterinary Medicine.

Source:
Journal reference:

Mittal, C., et al. (2022) An integrated SAGA and TFIID PIC assembly pathway selective for poised and induced promoters. Genes & Development. doi.org/10.1101/gad.350026.122.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Professor Nancy Ip: Pioneering New Paths in Neurodegenerative Therapy